최근 수정 시각 : 2022-06-20 19:25:33

수학


파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
교과목에 대한 내용은 수학(교과) 문서
번 문단을
부분을
, 동음이의어에 대한 내용은 수학(동음이의어) 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
이 문서는
이 문단은
토론을 통해 '수학적 환원주의' 문단을 삭제하기(으)로 합의되었습니다. 합의된 부분을 토론 없이 수정할 시 제재될 수 있습니다.
아래 토론들로 합의된 편집방침이 적용됩니다. 합의된 부분을 토론 없이 수정할 시 제재될 수 있습니다.
[ 내용 펼치기 · 접기 ]
||<table width=100%><table bordercolor=#ffffff,#1f2023><bgcolor=#ffffff,#1f2023><(> 토론 - '수학적 환원주의' 문단을 삭제하기
토론 - 합의사항2
토론 - 합의사항3
토론 - 합의사항4
토론 - 합의사항5
토론 - 합의사항6
토론 - 합의사항7
토론 - 합의사항8
토론 - 합의사항9
토론 - 합의사항10
토론 - 합의사항11
토론 - 합의사항12
토론 - 합의사항13
토론 - 합의사항14
토론 - 합의사항15
토론 - 합의사항16
토론 - 합의사항17
토론 - 합의사항18
토론 - 합의사항19
토론 - 합의사항20
토론 - 합의사항21
토론 - 합의사항22
토론 - 합의사항23
토론 - 합의사항24
토론 - 합의사항25
토론 - 합의사항26
토론 - 합의사항27
토론 - 합의사항28
토론 - 합의사항29
토론 - 합의사항30
토론 - 합의사항31
토론 - 합의사항32
토론 - 합의사항33
토론 - 합의사항34
토론 - 합의사항35
토론 - 합의사항36
토론 - 합의사항37
토론 - 합의사항38
토론 - 합의사항39
토론 - 합의사항40
토론 - 합의사항41
토론 - 합의사항42
토론 - 합의사항43
토론 - 합의사항44
토론 - 합의사항45
토론 - 합의사항46
토론 - 합의사항47
토론 - 합의사항48
토론 - 합의사항49
토론 - 합의사항50
||


과학의 범위
{{{#!wiki style="margin:-0px -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px; word-break:keep-all"
좁은 의미 [[자연과학|
자연과학
]] 물리학 · 화학 · 생물학 · 지구과학 · 천문학
넓은 의미 [[형식과학|
형식과학
]] 수학 · 통계학 · 전산학 · 논리학 · 암호학 · 언어학(생성이론)
[[응용과학|
응용과학
]] 거대과학 · 공학 · 건축학 · 경영학 · 법학 · 행정학 · 의학 · 치의학 · 한의학 · 간호학 · 약학 · 수의학 · 농학 · 임학 · 수산학 · 가정학
[[사회과학|
사회과학
]] 정치학 · 경제학 · 사회학 · 인류학 · 심리학 · 지리학 · 사회복지학 · 신문방송학 · 종교학
[[인문과학|
인문과학
]] 언어학 · 문학 · 사학 · 고고학 · 미술사학 · 음악사학 · 철학
비과학 변경지대의 과학 · 병적 과학 · 쓰레기 과학 · 유사과학 · 비과학 · 반과학 }}}}}}}}}

형식과학의 일반적 분류
수학 전산학 통계학
논리학 암호학 생성언어학
(형식주의 언어학)

1. 개요

/ Mathematics[1]

수학에 대한 합의된 정의는 없지만, 대체로 수, 양, 공간, 변화, 구조, 논리, 연산 등의 원리를 수와 기호 등을 통해 연구하는 학문이다.  이산수학 ·  대수학 · 해석학 · 기하학 및 이를 응용하는 학문을 통틀어 이르는 말이다. 일반적인 과학이 현실의 대상을 관찰한 결과를 이론으로 집대성한 학문적 결과라면, 수학은 인간의 두뇌로부터 사고하여 만들어진 추상적인 이론들을 ‘수’라는 개념으로 이해하기 쉽게 표현한 것이다. 따라서 인간이 보고 듣는 거의 모든 것이 수로 표현됐고, 이는 인류 문명의 혁명으로 이어졌다. 실제로도 물리학과 함께 인류 문명의 발전에 굉장히 큰 기여를 한 학문 중 하나로 평가받는다.

거시적으로는 이해할 수 없는 결과를 도출하는 양자 단위의 움직임도 종이에 수식으로 표현하면 ‘이론상으로는’ 증명할 수 있을 정도다. 즉 우주 진리에 가장 근접한 학문이 수학이다. 그도 그럴 것이 수학은 인간의 감각적 오류에 흔들리지 않기 때문이다. 괜히 고대 철학자들이 우주를 질서정연한 수의 세계로 본 게 아니다. 인간의 경험적 오류에 휘둘리지 않는다는 점 에서 근대 철학자인 르네 데카르트의 사상에 영향을 주었다.

현대 과학자들은 수학을 물리학 · 생물학 · 화학 · 경제학 · 공학 · 의학 등 모든 것을 대상으로 하는, 과학을 풀어나가기 위한 핵심적인 도구로 사용한다. 예를 들어 물질을 관찰하고 분석한다면 그 물질의 크기나 밀도나 갖고 있는 에너지 등을 측정한 뒤 그 정도를 오차 없이 기록하는 방법이 필요한데, 그 측정과 기록에 수학이 활약한다. 그러므로 수학이 없다면 인류 문명도 없을 것이다. 컴퓨터 프로그래밍 언어가 존재하듯이, 수학은 이공 계열 의학에서 사용하는 언어라고 볼 수 있다.

수학은 철학과 함께, 응용의 범위가 가장 큰 학문 중 하나이다.

2. 명칭

한자어 數學(수학)의 직역 탓에 막연히 '수학'이라고 하면 숫자나 계산만 다루는 학문( 산수)이라고 오해하기 십상이지만[2], 가장 근접한 정의는 수를 바탕으로 하는 논리 체계를 연구하는 학문이다.[3]

고대 그리스어 mathematikos에 기반한 영어 단어 mathematics는 아예 ‘배움의 기술’로 직역된다. 이처럼 서양 동양이 이 학문을 바라보는 관점은 서로 상당한 차이를 보인다는 것을 알 수 있다.[4]

이 때문에 '수학을 어떻게 정의내리는지' 연구가 이루어졌으나 대부분의 시도가 실패하였다. 실제로 1990년대에 접어들면서 학문의 명칭을 물리학(物理學)처럼 수리학(數理學)으로 바꾸려는 움직임을 보였으나, 기존에 쓰던 동음이의어[예]가 굉장히 많은 관계로 결과는 미미했다. 일각에서는 '생물'에서 '생명과학'으로 바꾼 경우처럼 초중등교육 과정에서부터 대대적인 개편 과정을 거듭해야 정착을 기대할 수 있을 것이라고 지적한다.

3. 역사

파일:상세 내용 아이콘.svg   자세한 내용은 수학/역사 문서
번 문단을
부분을
참고하십시오.

4. 과목

파일:천재교과서 고등학교 수학.jpg
2015 개정 교육과정 고등학교 수학
파일:천재교과서 고등학교 수학1.jpg 파일:천재교과서 고등학교 수학2.jpg
2015 개정 교육과정 고등학교 수학Ⅰ 2015 개정 교육과정 고등학교 수학Ⅱ
파일:천재교과서 고등학교 확률과 통계.jpg 파일:천재교과서 고등학교 미적분.jpg 파일:천재교과서 고등학교 기하.jpg
2015 개정 교육과정 고등학교 확률과 통계 2015 개정 교육과정 고등학교 미적분 2015 개정 교육과정 고등학교 기하
  • 실용 수학 · 경제 수학 · 수학과제 탐구 · 기본 수학 · 인공지능 수학

5. 분야

다음과 같은 단체에서 수학을 체계화하고 있다.

5.1. 순수수학

5.1.1. 수리 논리학

파일:상세 내용 아이콘.svg   자세한 내용은 수리 논리학 문서
번 문단을
부분을
참고하십시오.
논리를 수학적 대상으로 환원하여 수학적 방법론으로 연구하며 그 응용인 집합론, 모형 이론, 범주론, 계산이론(혹은 재귀이론), 증명이론, 구성주의 수학 등을 포함한다. 현대 논리학의 정수라고 할 수 있고, 현대 논리학 그 자체라고도 할 수 있다. 논리학은 철학의 한 분과에 속하는데, 논리학에서는 이 학문을 기호 논리학이라고 부른다. 즉 사실상 같은 학문을 두고 철학에서는 기호 논리학, 수학에서는 수리 논리학이라고 하는 것이다. 수리 논리학은 수학의 한 분야로 언급되지만, 사실상 ZFC 집합론과 카테고리 이론 정도의 시스템 안에서 대부분이 이루어지는 수학에 비해 오만 가지 형식적 시스템이 등장하고 수학을 이루는 형식적 시스템은 물론 형식적 시스템 일반을 대상으로 삼아 연구하는 터라 실제 타 수학과의 관련은 의외로 매우 적다. 오히려 메타수학 쪽에 가까운 학문으로 수학보다는 언어학, 철학, 컴퓨터과학 등 타 분야와 관련을 더 깊이 갖고 연구하는 경우가 많다. 일반적인 수학과 공유하는 부분은 수리논리 쪽에서 특정 수학분야 자체를 응용 대상으로 삼아 전개해나가는 경우, 예를 들면 호모토피 논리 등의 경우가 아니라면 형식논리, 집합론, 범주론 기초정도 약간에 역사적인 관점에서의 수학기초론 정도가 전부이다. 상대적으로 타 수학 분야 와의 관련성이 적으며 이쪽 분야 자체도 매우 크고 넓기 때문에 이쪽 관련 전공을 택할 경우 최대한 빠르게 시작하는 것이 좋다. 다만 한국 대학에서는 이 분야의 전공 교수진이 거의 없기 때문에[9] 맛보기 정도의 커리큘럼만 제공되는 것이 전부다. 따라서 집합론이나 수리논리학을 전공하고 싶다면 해외로 유학을 가거나 전공을 포기하는 수밖에 없다.
5.1.1.1. 이산수학
파일:상세 내용 아이콘.svg   자세한 내용은 이산수학 문서
번 문단을
부분을
참고하십시오.

5.1.2. 대수학

파일:상세 내용 아이콘.svg   자세한 내용은 대수학 문서
번 문단을
부분을
참고하십시오.
5.1.2.1. 선형대수학
파일:상세 내용 아이콘.svg   자세한 내용은 선형대수학 문서
번 문단을
부분을
참고하십시오.

5.1.3. 기하학

파일:상세 내용 아이콘.svg   자세한 내용은 기하학 문서
번 문단을
부분을
참고하십시오.
공간을 다루는 수학 분야다.

우리가 중고등학생 때 배우는 기하학이랑은 차원이 다르다. 당장 유클리드 기하학만 하더라도 수많은 공식들이 난무하며 머리가 돌아갈 지경. 학부 때 배우는 기하학은 보통의 2~ 3차원 유클리드 공간에 존재하는 기하학적 오브젝트[10]를 고차원으로 확장시켜 배우며 높은 수준으로 가면 종이에 표현이 불가능한 추상적 공간과 수식, 논리식밖에 안 나온다. 예를 들어, 2~3차원에서의 surface를 임의의 차원으로 확장시킨 것을 manifold(다양체)라고 한다. 그리고 여기까지 오면 이게 대체 왜 기하학에 속하는지가 이해하기 힘들 것이다. 사실 이는 그림으로 표현이 불가능해졌을 뿐, 공간의 기하학적 구조를 다룬다는 사실 자체는 같기 때문에 기하학의 한 개체로 보는 것이 맞는다. 기하학은 일반적으로 해석기하학과 대수적 기하학으로 나뉘는데, 현대수학에 와서 해석기하학은 미분기하학으로 대표된다. 미분기하학은 미분이라는 구조를 가지고 curve와 surface, 나아가서는 manifold와 vector bundle을 위시한 기하학적 개체를 다루는 학문이다. 대수기하학의 경우 현대수학의 각 분야 전반과 매우 깊은 연관을 맺고 있다. 심지어 수학기초론도 포함된다. 일반적인 기하학보다도 훨씬, 타 분야와의 관련성이 많다.
5.1.3.1. 위상수학
파일:상세 내용 아이콘.svg   자세한 내용은 위상수학 문서
번 문단을
부분을
참고하십시오.
위상수학은 위상공간에 관해 연구하는 학문이다. 위상(topology)을 간단히 정의하자면, 어떤 집합의 부분집합 중에서 무엇이 '열린 집합'인지 정해놓은 것인데, 그런 위상이 정의된 집합을 위상공간이라고 한다. 물론 아무렇게나 열린 집합을 정하면 위상이 되는 것은 아니고 특정한 조건을 만족해야 하는데, 그 조건이란 게 만족시키기 어려운 것은 아니라서 사실상 수학에서 사용되는 거의 모든 것에 대해서 정의가 가능하다고 할 수 있을 정도이다. 가령 프로그래밍 언어에도 위상을 정의하여 위상공간으로 만들 수 있고, 논리체계에도 위상을 정의하여 위상공간으로 만드는 게 가능하다.

위상수학의 분야로는 크게 일반위상수학, 대수적위상수학, 미분위상수학의 세 분야가 있다. 일반위상수학은 말 그대로 일반적인 공간의 성질들, 예를 들어 컴팩트, 분리공리 등을 다루고, 대수적위상수학은 호모토피라든지 이의 기본군, 그리고 피복공간이나 공간의 축약 등에 대해 다룬다. 마지막으로 미분위상수학은 미분기하학에서 다루었던 여러 대상들, 텐서, 접공간 등이 등장하고 또한 미분다양체 위에서의 여러 가지 성질이나 미분형식 등을 특히 주로 다룬다.

위상수학에 관해 정성적으로 말하자면 보통의 기하학이 거리공간을 사용하여 '거리'도 어느 정도 중시한다면 위상공간은 '경계'를 중시하는 경향이 있다. 즉 위상수학에서는 '닿았는가 닿지 않았는가'만 중요시하고, 닿지 않았을 경우 '얼마나 떨어져있는가'는 보통 거리공간을 사용하는 기하학의 영역이다. 이는 상기했듯 위상수학은 기하학과 달리 공간의 본질에 대해 주로 다루기 때문이다. 물론 초반부 이야기고 어차피 나중 가면 알아볼 수 없게 뒤섞이게 된다. 이는 공간의 표면과 본질은 완전히 분리될 수 없음을 의미한다.
파일:상세 내용 아이콘.svg   자세한 내용은 매듭이론 문서
번 문단을
부분을
참고하십시오.
매듭을 수학적으로 다루는 위상수학의 하위 분야.

5.1.4. 해석학

파일:상세 내용 아이콘.svg   자세한 내용은 해석학(수학) 문서
번 문단을
부분을
참고하십시오.
변화( 함수)와 무한( 무한대, 무한소)에 대한 학문이다.

다르게 표현하자면, 여러 함수를 탐구함과 함께 이를 통해 다른 분야로의 응용을 추구하는 학문이라 할 수 있다. 물론 해석학 내의 개념에서는 다른 학문에서 출발한 것도 많이 있다. 예를 들면 유클리드 공리계에서는 점은 길이가 없는 선이라고 정의되어 있는데 후대 수학자들이 길이가 0인 점을 무한히 더하면 길이가 0보다 큰 선이 되는 것에 관심을 가진 것이 측도이론이 탄생한 배경이다. 물론 우리는 이제 그 질문의 답을 알고있다. (점들의)유한집합과 셀 수 있는 무한집합은 측도가 0이고 측도가 0보다 큰 집합은 셀 수 없는 무한집합이다.[11] 이 예로 유리수집합은 측도가 0이나 실수집합은 측도가 0보다 크다. 또한 타 분야에서 시작된 개념들이 해석학에서 발전된 것으로는 함수 해석학이 있는데, 함수 하나하나를 벡터로 본다는 시각은 선형대수학이 없었다면 나올 수 없었을 것이다.
5.1.4.1. 미적분학
파일:상세 내용 아이콘.svg   자세한 내용은 미적분학 문서
번 문단을
부분을
참고하십시오.
  • 미적분학
    고교에서 배웠던 미적분 이후로 미분방정식, 편미분 등 다양한 미적분을 다룬다.
  • 미분방정식
    말 그대로 미분방정식과 그 해법에 대해 연구하는 학문이다. 크게 상미분방정식과 편미분방정식으로 나누어지며, 수학의 여러 분야뿐 아니라 타 학문에도 매우 응용이 많이 되는 분야다. 특히 물리학의 경우에는 미분방정식이 없으면 성립조차 안 될 학문이라고 할 수 있다. 애초에 뉴턴의 운동 제2법칙부터가 미분방정식이다. 또한 미분방정식의 등장으로 출현할 수 있었던 대표적인 수학 분야로 푸앵카레가 창시한 동역학계를 들 수 있는데, 이름을 보면 물리학의 특정 분야라고 생각할 수 있으나 경제학, 생물학 등에서도 많이 응용되는 분야다.

5.2. 응용수학

여기에 나오지 않더라도 @@수학, 수리@@학, 계량@@학 등의 이름으로 여러가지 수학이 존재한다.

5.2.1. 이론전산학

일반적으로 이산수학의 한 범주로 넣는다. 특히 이산수학을 전산학적으로 다루는 경우에 가장 집중적으로 배우게 되는 것이 수치해석이다. 현대적인 컴퓨터를 비롯한 모든 연산장치는 유한 자릿수의 이산적인 수치만을 취급하기 때문에 그러한 것이다.

5.2.2. 수리 통계학

일반적인 인식으로는 통계는 수학에서 가장 쓸모 있고 실용적인 것이라고 하지만, 통계를 배운 사람들은 알겠지만(어느 쪽에 중점을 두는 학교에서 배웠느냐가 문제가 되겠지만) 수학이 포함되지 않는 부분들이 많다. 통계 중에서도 수학과 관련된 부분은 수리통계학(Mathematical statistics)라 하여 통계학과 수학의 공통된 학문으로 구분한다.[12] 통계학은 귀납적인 부분이 매우 많은 학문으로, 연역논증의 대표주자인 수학과는 별개로 보는 경우가 많다. 통계학에서 수학은 처음에 기초 부분을 배울 때는 어느 정도 필요하지만 그 이후에는 관련 분야를 선택하는 사람들만 수학적으로 더 파고 들어가 배우는 것이 일반적이다.
통계학의 분야로 넣기는 하는데 내용은 해석학에 가깝다. 이는 확률론이 기본적으로 측도론을 기반으로 하고 있기 때문. 특히 기하학적 확률을 다루면서 이런 특성이 두드러지게 나타난다.

5.2.3. 암호학

암호와 정수론은 뗄레야 뗄 수 없는 관계가 되어 버렸다.

RSA 암호화, 타원곡선암호, DES, AES 등등 수많은 현대적 암호화 알고리즘 중 수학적 기반 없이 설계된 것은 하나도 없다.
최근에 들어서 중요하게 연구되고 있는 데이터를 암호화한 채로 연산할 수 있는 암호화 기법인 동형암호[13], 양자 컴퓨터에도 안전할 것으로 생각되는 다변수 기반, 코드 기반, 아이소제니 기반, 해쉬 기반, 격자기반의 양자내성암호(Post-Quantum Cryptography)에도 많은 수학들이 적용이 된다[14]

5.2.4. 제어이론

제어공학에서 해결하고자하는 문제들은, 사실 그 출처와 뿌리는 순수수학에서 관심을 갖는 문제들과는 전혀 상관이 없는 지극히 현실적이며 완전히 공학적인 여러 영역들[15]부터 비롯된 것들이다.

그러나, 시간이 흐르며 이러한 문제들이 해결되는 과정에서 엄밀한 순수수학의 지식들의 위력이 이 분야에서 굉장히 크다는것이 점차 증명되었고, 이에 따라 제어공학에서 수학의 비중은 점점 더 커져갔다. 그래서 제어공학의 발전에 많은 영향을 준 인물들 중에는 안드레이 콜모고로프, 노버트 위너, 루돌프 칼만과 같이 공학자라고 부르기는 힘든, 순수 수학자에 더 가까운 인물들도 많다.

이러한 과정을 거쳐 현재는 결국 제어공학에서 다루는 문제들 중 많은 것들은 그 형태가 대다수의 공학들과는 달리, 마치 정보이론처럼, 수학에서 다루는 문제들과 유사하게 되어버렸다. 즉, 문제 해결에 필요한 현대 수학의 지식의 범위가 다른 필드에 비해 많다는 점도 특징적이지만 그와는 별개로, 해결해야되는 문제의 형태 자체가 어떤 수학적인 정리와 결과를 적용하여 연산을 통해 유의미한 해결책을 찾아내는 것이 아니라, 모델링을 통해 뽑아낸 어떤 수학적인 객체에 대해 수학적으로 연구를 하고, 그 과정에서 필요하다면 이전에 없던 새로운 수학적 개념도 정의하고, 성질을 찾아내기 위해 수학적으로 엄밀하게 증명을 해야하는 것이 문제 그 자체가 된 경우가 많아진 것이다. 이러한 연유로 이제는 아예 제어이론이라는 학문은 공학의 하위 분야가 아닌 응용수학의 범주에 포함된다는 관점으로 다뤄지기도 한다.

그렇기 때문에 현재는 학계에서 제어를 전공하여 연구한다라고 하면 일반적으로 두 가지 경우로 나뉜다. 첫 번째는 위에서 서술한 것과 같이 응용수학으로써의, 이론적인 학문인 제어이론에 대한 연구이고, 두 번째는 그러한 이론적인 학문인 제어이론을 통해 나온 결과들을 특정 분야의 실제 산업[16]에 적용하고, 구현하는 것에 대해 연구하는, 제어공학에 대한 연구이다.[사실]

첫 번째 유형의 랩실의 경우 회로, 동역학, 기계 지식 등 공학적 배경이 거의 없는 순수수학, 응용수학 출신의 졸업생들도 많이 지원을 한다.[18] 두 번째 유형의 경우는 연구에서 수학이 차지하는 비중이 더 적으며, 문제에서 다루는 시스템 그 자체(전기회로나 동역학계, 전력 시스템 등등)에 대한 지식들과, 구현에 필요한 지식(MCU 코딩 등등)과 같은 공학적인 지식들이 더 중요하다.

읽다보면 느낌이 왔을 수도 있겠지만 현재 학계에서 연구하는 응용수학으로써의 제어이론은 현실의 산업에서 실제로 쓰이는 제어 기법들과 괴리가 꽤 커진 상태다.

6. 다른 학문과의 관계

아무리 추상적이어도 수학이라면 언젠가는 현실 세계에서 벌어지는 현상에 응용되게 마련이다.
- 니콜라이 로바체프스키

수학은 그 자체가 확립된 하나의 학문이기도 하지만, 다른 학문을 배우고 연구하는데 필요한 도구로서 사용되거나 각종 정의나 원리, 법칙 등을 서술하는 언어로서 사용되기도 한다.

특히 자연과학이나 공학에서 다루는 각종 원리나 법칙들은 일상 언어를 가지고는 설명하고 이해하기가 대단히 어렵거나, 아예 불가능한 것들이 많기 때문에 이러한 대상들을 엄밀하게 정의된 수식을 이용해 수학적으로 표현하고 다루게 된다.

6.1. 자연과학

수학을 모르는 사람은 자연의 진정한 아름다움을 알 수 없다.
- 리처드 파인만

6.1.1. 물리학


수학과 물리학과의 관계는 매우 각별하다. 물리에 필요한 수학들은 보통 수리물리학을 통해서 공부하지만 수학과 수업을 듣거나 복수전공해버리는 학생도 있다.

6.1.2. 화학

물리화학, 무기화학, 계산화학, 분석화학 분야에서 수학을 많이 쓴다.

6.1.3. 생물학

수학을 통해 생물학을 연구하는 분야를 수리생물학이라고 부르며 수학을 통해서 생명현상을 연구한 몇가지 사례들이 있다.

기본적인 수준에서의 수학의 예로는 고등학교에서 생명과학2를 공부하면 등장하는 하디-바인베르크 법칙이 있다. (참고로 하디-바인베르크 법칙의 하디는 생물학자가 아닌 수학자이며, 라마누잔의 스승이다. 바인베르크는 생물학자.)

진화생물학 관한 수학적 설명으로 20세기 최고의 진화이론학자 중 한 명인 윌리엄 D. 해밀턴 포괄 적합도라는 개념을 통해 친족선택의 수학적 증명을 제시했다.

영국의 생물학자 다르시 웬트워스 톰슨은 성장과 형태에 관하여(On Growth and Form)라는 1116쪽에 이르는 방대한 분량의 책에서는 수학을 이용하여 생물이 가지는 기관의 형태 형성을 설명한다. 특히나 마지막 17장 ("변형의 이론, 또는 관련된 형태의 비교에 대하여")에서 톰슨은 생물의 형태에 좌표의 개념을 도입한 뒤 좌표의 변형을 통해 관련된 다른 종의 형태가 나타날 수 있음을 많은 실례를 통해 보여줬다.[19]

생명체의 형태에 관한 또다른 수학적 설명으로는 앨런 튜링이 1952년 런던왕립학회가 발행하는 생물학 학술지에 '형태발생의 화학적 기초(The chemical basis of morphogenesis)’라는 제목의 논문이 있다 이 논문은 반응-확산 모형에서 2가지 이상의 서로 다른 종류의 분자가 서로 반응하고 확산하면서 주위로 퍼져나가면 자연의 많은 동물들이 가지는 줄무늬나 점무늬 같은 기하학적인 형태의 패턴을 만든다는 것을 미분방정식을 통해 수학적으로 설명했고 이러한 패턴을 튜링패턴이라고 한다.

생태학에서 등장하는 미국의 수학자 앨프리드 제임스 로트카와 이탈리아의 생물학자인 비토 볼테라가 발표한 로트카-볼테라 방정식은 생태계의 성장이나 물질순환, 화학반응 등 광범위한 생명현상을 수리적으로 분석하는 일에 이용된다. 러시아의 생태학자 가우제, 코스츠킨 그리고 수학자 콜모고르프는 볼테라의 성과를 확장하여 포식자와 피식자 간의 생태학적 경쟁에 대하여 4가지의 경우로 정리하기도 했다.

위에서 나온 유전학, 진화 생물학, 형태학, 생태학 말고도 생물체의 패턴을 분석해 질병의 원인을 추론하기 위해 수학을 사용한다. 현대 의료보건 및 생물학 연구에서 통계학자뿐만 아니라 수학자를 채용하는 것은 드문 일이 아니다. 한 사람의 유전자 데이터만 해도 50Gb(기가 베이스, 염기쌍 개수가 오천만 개)에 달해 여러 사람의 유전자를 분석하는 일은 매우 어렵다. 그래서 고도의 수학 기법을 써서 데이터를 줄여야 한다. 이 분야에서 가장 유명한 것은 인간 게놈 프로젝트를 이끌었던 에릭 랜더인데, 이 사람은 의료보건 분야 출신이 아니라 수리과학 출신이다.

분자생물학에서 DNA 염색체에 감기고 복제를 위해 풀리는 구조를 이해하기 위해서 위상수학의 하위분야인 매듭이론 DNA의 위상 변화를 관찰하여 효소의 작용 메커니즘을 알아내는데 이용한다. 일종의 부산물처럼, DNA 매듭의 교차점 수의 변화로 생물학자들은 효소의 반응속도, 곧 주어진 농도의 효소가 1분당 얼마나 많은 교차점에 영향을 미치는지 측정할 수 있다.[20][21][22]

6.1.4. 지구과학

인류가 바다를 정복하며 발전시킨 측량기법, 농사의 체계화 과정에서 발전한 날씨/날짜 체계, 전쟁을 통해 발전시킨 지형 분석 등 수많은 지구과학의 성과들은 수학에 빚을 지고 있다. 현대적으론 인공위성을 통한 지형, 중력장, 자기장 변화와 기상 예측 인공지능, 강우량 분석, 지진 예측, 대기, 해양과 지하수의 움직임 측정 (또는 모델링)등의 연구에서 수학을 사용한다.

6.2. 공학

공학은 수학이라는 언어를 통해서 인공물을 설계해낸다. 분야에 따라 필요한 수학의 범위나 깊이가 다르긴 하지만, 공업수학/ 해석학/ 미분방정식/ 선형대수학은 공통적으로 사용한다. 그리고 컴퓨터공학분야에선 이산수학 수리논리학도 깊게 공부해야 한다.

공학에서 응용되는 수학은 날이 갈수록 복잡해지고 있다. 공대의 학부 과정만 졸업한 학생들은 "공대의 수학은 수학과의 수학에 비해 덜 복잡하다"고 착각하는데, 석사 이상으로 올라가면 자신이 공학을 전공하는 것인지 수학을 전공하는 것인지 착각할 정도로 복잡한 수학을 사용하게 된다. 특히 인공신경망, 빅데이터, 날씨 예측, 재난 예측 등 복잡한 현상을 공학적으로 연구할 경우 수학의 복잡도도 그만큼 커진다.

6.3. 의학, 약학, 수의학

의료계에서도 수학을 사용한다. 다만 의사가 일일이 계산하는 것이 아니라, 의료기기가 자동으로 계산하는 것이다.

먼저 CT(컴퓨터단층촬영)의 경우, 연립방정식을 사용한다. CT는 여러 각도에서 방사선을 투과하는데, 이때 복잡한 수학계산을 통해 인체의 각 부분에서 어느정도 흡수됐는지 측정값을 구해 인체를 단면 영상으로 재구성한다. 뼈와 근육 등 각 인체 부위의 밀도와 두께에 따라 방사선 투과량이 달라지기 때문이다. CT 촬영시 한 방향에서 방사선을 투과시킬 때마다 신체 각 부분을 미지수로 하는 방정식을 얻을 수 있고, 여러 방향에서 방사선을 투과시켜 연립방정식을 얻게 된다. 이후 컴퓨터가 복잡한 계산과정을 거쳐 연립방정식을 풀고, 이를 통해 인체 각 부위별 방사선 흡수치를 구함으로써 신체의 단면 영상을 얻는 게 CT 촬영의 원리다. 미분방정식은 감염병 발생시 확산 경로를 예측하는 데 활용된다. 동맥이나 정맥 등 혈관을 지나는 혈류 속도와 혈류량을 구하는 데도 미분방정식이 적용된다.

수학 모델을 동원하여 전염병의 확산경로를 추정하기도 한다. 유동인구, 가축, 도심 속 곤충 등 전염병의 매개체를 추정하고, 이들의 이동경로와 이동속도를 모델링하여 전염병의 확산을 대략적으로 시뮬레이션할 수 있다.

아동의 뇌를 영상으로 분석하여 ADHD을 진단하는데 위상수학 기하학을 기반으로한 위상 데이터분석이 활용되기도 한다[23]

6.4. 심리과학

6.4.1. 신경과학

수학,컴퓨터과학을 사용하는 신경과학 분야를 계산신경과학(computational neuroscience)이라 부른다. 쉽게 말해 뇌의 신경지도를 만드는 분야다. 그래프와 네트워크 이론을 통해 뇌신경의 연결 구조를 파악하고, 신경전달물질과 호르몬을 수학적으로 모델링하여, 어떤 화학물질이 얼마나 들어갔을 때 뇌의 어떤 부위에 어떤 변화를 일으키는지 시뮬레이션하는 것이 계산신경과학의목표다.

6.4.2. 인지과학

인지과학은 컴퓨터의 소프트웨어가 하드웨어와 별도로 존재하는 현상에서 영감을 받아 탄생한 과학 분야다. 주로 표상의 형식, 인지과정의 계산이론, 인지 과정의 형식이론 등이 연구된다.

6.4.3. 심리학

수학을 사용하는 심리학 분야를 수리심리학(Mathematical psychology)이라 한다. 인지 모형을 만들어 의사결정을 모델링하거나, 심리 현상을 측정할 도구를 만들기도 한다.

6.5. 사회과학

6.5.1. 경제학

사회과학에서 수학을 가장 많이 쓰는 분야는 단연코 경제학이다. 학부 과정에선 경제수학 경제통계학을 배워야 하고, 석사로 올라가면 선형대수학, 해석개론, 미분방정식, 실변수함수론, 수리통계 등을 이수하는 것이 일반적으로, 특히 정말 깊게 공부하고 싶다면 어느 분야든지 확률론은 피해갈 수 없다. 극단적인 경우는 모델링을 한답시고 물리학과 수업까지 듣는 경우도 있다. 그래서 수학과를 복수전공하는 경제학과 학생들도 종종 보인다.

6.5.2. 정치학

정치학 역시 경제학의 방법론을 보며 그 영향을 받아 적극적으로 수학적 방법론을 받아들였다. 이러한 정치학 연구 관점을 행태주의 정치학이라고 한다. 다른 사회과학 학문들처럼 미적분학, 통계학, 게임이론 등 많은 수학적 지식이 정치학 연구를 위해서 사용되고 있다.

6.5.3. 사회학

사회학도 이미 수학을 사용한 방법론을 사용하는 분야가 있다. 합리적 선택이론(rational choice theory) 내지는 일반화 이론(formal theory), 계량적 방법론(quant), 연결망 이론(network theory) 등을 활용하는 수리사회학이라는 영역이 존재한다. 중급 선형대수학 통계학, 미분방정식 이상을 사용하는 모델링이다.

6.5.4. 인류학

인류학에서도 하위 분야인 체질인류학에서 통계 분석을 위해 수학을 동원하는 등 수학과 관련된 분야가 존재한다. 좀 더 응용에 가까운 예를 들자면 데이터의 분석을 위해 통계학을 동원하는 사례가 사회과학 전반에 매우 많다. 통계적 방법 문서 참고.

여담으로 구조주의 철학자이자 인류학자인 클로드 레비스트로스는 카리에라족의 혼인제도의 독특한 규칙을 설명하기 위해서 초기 니콜라 부르바키의 리더였던 수학자 앙드레 베유에게 도움을 받았는데 여기서 카리에라족의 결혼제도가 클라인 4원군을 따른다는 것을 알아냈다.

6.6. 인문학

6.6.1. 언어학

언어학은 문학과 달리 상당히 과학적인 방법론을 동원하는 분야로[24], 역시 경우에 따라서 어느 정도의 수학적 지식이 쓰일 수 있다. 물론, 그 분야는 음운론, 형태론, 통사론 등에 따라 적용 양상이 다르겠지만, 대체로 비(非)이공계 학문의 수학이 그렇듯, 통계학적인 내용을 쓰는 때가 대부분이다. 한 가지 예를 들자면, 음운론에서 음절의 이론상 가능한 가짓수를 따질 때, 순열 또는 조합을 응용할 수 있다. 음절 구조(CVC, CCVCC 등)에서 각 자리별로 가능한 자음의 종류 및 가짓수 등이 언어별로 다른데, 이를 따질 때 일일이 모든 음절을 따져서 하는 것은 매우 비효율적이므로 조합을 활용하고 이후 다른 영역을 적용하면 된다. 또한 추상대수학 오토마타 이론도 연구에 유용하게 쓰인다. 문과라도 수학과 거의 관련없는 분야는 사실 문학이 전부라고 보아도 과언이 아니다.

6.6.2. 철학

파일:상세 내용 아이콘.svg   자세한 내용은 수학-철학 관계 문서
번 문단을
부분을
참고하십시오.

6.6.3. 역사학

심지어 수학과 전혀 관계없을 것처럼 보이는 역사학마저도 방법론 단계에서 수학을 도입하는 경우가 많다. 경제사, 정치사 등을 연구할 때 각종 통계 수치를 분석하기 위해 수학을 동원하고 있으며, 전쟁 등 역사적 사건의 빈도를 수학적으로 계산해 일반화시키는 시도까지 존재하고 있다. http://ashvina.egloos.com/3946081

6.7. 예술

6.7.1. 음악

거의 대부분 단과대학에서 배우기에 도저히 수학과 관련을 찾기 힘들어보이는 음악 또한 수학이 매우 많이 사용되는 분야이다. 대표적으로 화음 구성의 기초가 되는 순정률 피타고라스 학파가 발견했으며, 피타고라스 본인 또한 음악에 조예가 깊은 인물이었다. 이 때문인지 화성학의 기본 개념들은 거의 대부분 수학적으로 환원할 수 있다.

음향과의 경우 3차원 공간 개념을 위해 좌표공간을 배우는 것은 물론 샘플링 이론의 이해를 위해 푸리에 급수부터 시작하는 해석학을 가볍게나마 배우게 되며, 학과 특성상 전자공학도 같이 배우는 경우가 간혹 있는데 이 경우엔 맥스웰 방정식을 위시한 전자기학까지 배워야 한다. 물론 이는 흔치 않은 사례이나 고대부터 현대까지 음악 또한 수학과 밀접한 관계를 맺고 있었던 것은 사실이다

현대에 작곡가 중에서 이안니스 크세나키스의 작품 확률론《Pithoprakta》에 쓰인 맥스웰-볼츠만 기체 동역학 이론,《Diamorphoses》에 쓰인 aleatory distribution of points on a plane, 《Achorripsis》에 쓰인 minimal constants, 《ST/10》과 《Atrèes》에 쓰인 정규분포 함수, 《Analogiques》에 쓰인 마르코프 체인, 게임 이론(《Duel》과 《Stratégie》), 군론(《Nomos Alpha》), 불 대수(《Herma》와 《Eonta》) 등의 수학적 개념을 자신에 작품에 녹아냈다. 크세나키스 이외에도 밀턴 배빗은 음악 이론가이자 수학자였으며 1946년에는 〈12조 체계에서 집합 구조의 기능〉이라는 수학과 음악을 접목한 매우 난해한 논문을 박사 학위 논문으로 제출했다.[25]

음악과 수학이 만나는 몇가지 사례를 소개하자면 미분방정식에서 벡터와 텐서를 다룰 때 조표를 이용해 나타내는 음악동형이있다, 리처드 보스와 존 클라크는 파워 스펙트럼(노이즈) 중에서 주파수 변화량 f에 따라 1/f 특성을 가진 핑크 노이즈가 규칙적이면서도 불규칙적인 자연현상과 유사한 형태를 가짐을 발견했다. 그래서 1/f 패턴을 갖는 음악을 프랙탈 음악이라고 부른다 그리고 음악적 집합론(Musical set theory)[26]이라는 분야도 있는데 이름은 음악적 집합론이지만 오히려 군론, 조합론과 더 밀접한 관계를 가지고 있다.

7. 대학 교과 과정

파일:상세 내용 아이콘.svg   자세한 내용은 수학과 문서
번 문단을
부분을
참고하십시오.

7.1. 학부

이 아래에 나열된 과목들은 수학과&수학교육과에서 모두 배운다.

7.2. 대학원

8. 수학자

파일:상세 내용 아이콘.svg   자세한 내용은 수학자 문서
번 문단을
부분을
참고하십시오.

9. 관련 상

  • 필즈상 - 필즈상(Fields Medal) 또는 필즈 메달은 국제 수학 연맹(IMU)이 4년마다 개최하는 세계 수학자 대회(ICM)에서 수상 당시 40세 미만의 수학자들에게 수여하는 상이다. 2명 이상 4명 이하에게 수여되며 필즈상 수상은 수학자들에게 가장 큰 영예로 여겨진다.
  • 가우스상(Carl Friedrich Gauss Prize) - 4년마다 개최하는 세계 수학자 대회(ICM)에서 공학· 비즈니스 등 응용수학 부문에 업적을 남긴 수학자에게 주는 상.
  • 천메달( Chern Medal) - 중국의 수학자 ' 천싱선'을 기려 만든 상으로, 4년마다 개최하는 세계 수학자 대회(ICM)에서 평생의 업적을 고려하여 수여된다.[30]
  • 네반리나상(Rolf Nevanlinna Prize) - 4년마다 개최하는 세계 수학자 대회(ICM)에서 수리정보과학 분야에 업적이 있는 수학자에게 수여되는 상.
  • 릴라바티상(Leelavati Prize) - 4년마다 개최하는 세계 수학자 대회(ICM)에서 수학의 대중화에 공헌한 수학자에게 수여된다.
  • 아벨상 - 노르웨이의 수학자 닐스 헨리크 아벨의 이름을 딴 상으로, 노르웨이 왕실에서 수여하는 상이다. 2003년부터 수상이 시작되었다. 수학자가 일생 동안 쌓아온 업적을 바탕으로 상을 주기 때문에 거의 대부분 수상자들의 나이가 많다.
  • 울프상( 울프상 수학부문) - 이스라엘의 노벨상이라는 별명이 있으며 독일계 발명가이자 이스라엘의 주(駐) 쿠바 대사를 지낸 바 있는 리카르도 울프 박사가 설립한 이스라엘의 울프 재단에서 시상한다. 상은 모두 6개 부문으로 나뉘어 있다. 농학, 화학, 수학, 의학, 물리학, 그리고 예술 부문 상은 건축, 음악, 미술, 조각 분야에서 순환하여 매년 시상한다. 각 상은 상장과 미화 10만 달러의 상금이다.

    물리학 화학 부문에서 울프상은 노벨상 다음으로, 이 분야에서의 가장 명성이 있는 상으로 평가받고 있다. 의학 분야는 노벨상과 래스커상 다음으로, 즉 3번째로 평가되는 상이다. 수학 분야에서는 노벨상이 없으므로, 필즈상, 아벨상 다음으로 유명하다.
  • 브레이크스루 상(Breakthrough Prize in Mathematics)[31] - 브레이크스루 상은 실리콘밸리의 노벨상이라는 별명을 가진 상으로 실리콘밸리 투자자인 유리 밀너, 페이스북 설립자 마크 저커버그 부부, 구글 공동설립자 세르게이 브린 등이 설립한 상으로 300만 달러라는 노벨상보다 많은 상금으로 유명하며 시상 분야는 수학, 기초 물리학, 생명과학이다.
  • 오즈월드 베블런 기하학상(Oswald Veblen Prize in Geometry)[33] - 기하학 또는 위상수학에 공헌한 수학자에게 3년마다 미국 수학회가 수여하는 상이다.
  • 프랭크 넬슨 콜상(Frank Nelson Cole Prize)[34] - 대수학상과 정수론상 두 분야로 나눠져 있으며 3년마다 미국 수학회에서 상을 수여하는 상이다.
  • 보처 기념상(Bôcher Memorial Prize)[35] - 해석학 분야에서 주목할만한 연구에 대해서 3년마다 미국 수학회에서 수여하는 상이다.
  • 델버트 레이 폴커슨상(Delbert Ray Fulkerson Prize)[36] - 이산수학 분야에서 뛰어난 논문에 대해 3년마다 미국 수학회, 수리최적화 학회에서 공동으로 수여하는 상이다.
  • 살렘 상(Salem Prize)[37] - 라파엘 살렘을 기억하기 위해서 만들어진 상으로 해석학 분야에 공헌을 한 젊은 수학자에게 수여하는 상이다.
  • 루에브 상(Loève Prize)[38] - 2년마다 45세 이하의 확률론에 관한 뛰어난 공헌을 한 연구자에게 수여하는 상이다.
  • 롤로 데이비슨 상(Rollo Davidson Prize)[39] - 매년 확률론에 관해서 초기 경력을 가진 젊은 수학자들에게 수여하는 상이다.
  • 카프 상(Karp Prize)[40] - 5년마다 기호 논리학 분야의 뛰어난 논문이나 책에 대해 기호 논리 협회(Association for Symbolic Logic)가 수여하는 상이다.
  • 하우스도르프 메달(Hausdorff Medal)[41] - 격년으로 유럽 집합론 학회가 지난 5년 동안 발표된 모든 논문 중에서 집합론에 가장 큰 영향을 미친 것으로 간주되는 작업 대해서 수여하는 상이다.
  • 페르마상(Fermat prize)[42] - 매년 2년마다 피에르 드 페르마가 공헌했던 분야와 밀접한 수학 연구에서 업적을 남긴 수학자에게 수여하는 상이다. 대표적으로 변분 원리의 진술, 해석기하학 확률론의 기초, 정수론 등이다. 1989년에 창설되었으며, 2년마다 툴루즈의 툴루즈 수학 연구소에서 시상한다. 상금은 2만 유로이다.
  • 오스트로프스키 상(Ostrowski Prize)[43] - 바젤 대학, 예루살렘 대학, 워털루 대학 그리고 덴마크와 네덜란드 아카데미의 국제 심사위원이 심사하는 뛰어난 수학적 성과에 대해 홀수년마다 수여하는 수학상이다.
  • 클레이 연구상(Clay Research Award)[44] - 100만 달러의 상금이 걸려 있는 밀레니엄 문제를 제안한 것으로 유명한 클레이 수학연구소에서 수학의 연구에 있어서 중요한 돌파구를 만들어낸 수학자에게 수여하는 상이다.
  • 유럽 수학회 상(European Mathematical Society Prize)[45] - 유럽수학회의(European Congress of Mathematics)는 4년마다 유럽 수학회의 주최로 개최되며, '35세 이하의 유럽의 젊은 연구자들의 수학에서 뛰어난 업적을 인정'하는 유럽 수학회 상 10개가 수여된다.

  • 튜링상 - ACM(Association for Computing Machinery)에서 컴퓨터 과학 분야에 업적을 남긴 사람에게 매년 시상하는 상. ACM 연례 회의에서 시상식을 하는데 여기서 수상자가 기념 강연을 하는 것이 관례이다. 앨런 튜링의 이름을 따서, 1966년 제정되었고 컴퓨터 과학 분야의 노벨상으로 불리며 컴퓨터 과학 분야 인사에게 최대의 영광으로 인식된다.

    컴퓨터 과학의 역사는 많은 수학자의 연구를 바탕으로 만들어진 학문으로 블레즈 파스칼[46], 고트프리트 빌헬름 라이프니츠[47], 찰스 배비지[48], 폰 노이만, 알론조 처치, 앨런 튜링, 클로드 섀넌 같은 선구자들 연구를 기반으로 발전했으며 수학자 중에서 튜링상을 받은 사람들도 있는데 1968년에 자동 코딩 시스템, 오류 검출 부호 및 오류 정정 부호에 대한 업적으로 받은 리처드 해밍, 1970년 수치 해석, 선형 대수, 후방 오류 분석에 대한 업적으로 받은 제임스 하디 월킨슨, 1976년 비결정 기계에 대한 업적으로 받은 데이나 스콧, 1982년 계산 복잡도 이론에 대한 업적으로 받은 스티븐 쿡[49]가 있으며 수학의 주요 응용분야 중 하나인 암호학에 관해서도 2002년 RSA 암호, 2015년 디피-헬먼 키 교환, 2012년 영지식 증명과 골드바서-미칼리 암호체계에 대한 업적으로 암호학자들이 튜링상을 받았다
  • 국제통계학상(International Prize in Statistics)[50]- 국제통계학상은 "과학, 기술, 인간의 복지를 증진시키기 위해 통계학을 이용한 주요 업적에 대해" 개인 또는 팀에 2년마다 수여된다. 국제통계학상은 COPSS Presidents' Award[51]와 함께 통계학 분야에서 가장 높은 두 가지 영예이다. 이 상은 노벨상, 아벨상, 필즈상, 튜링상을 본뜬 것으로 8만 달러의 상금이 수여된다. 시상식은 세계 통계학 대회(World Statistics Congress) 기간 동안 열린다.

10. 수학회

11. 수험 과목으로서의 수학

12. 관련 문서

12.1. 둘러보기 틀

수학기초론
Foundations of Mathematics
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
{{{#!wiki style="letter-spacing: -1px"
다루는 대상과 주요 토픽
수리논리학 논리 · 논증{ 귀납논증 · 연역논증} · 공리 및 공준 · 증명{ 자동정리증명 · 귀류법 · 수학적 귀납법 · 반증 · PWW} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문( 조각적 정의) · 명제 논리( 명제, 아이버슨 괄호 · · · 대우) · 양상논리 · 술어 논리( 존재성과 유일성) · 형식문법 · 유형 이론
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성
집합론 집합( 원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계( 동치관계 · 순서 관계) · 서수( 하세 다이어그램 · 큰 가산서수) · 수 체계 · ZFC( 선택공리) · 기수( 초한기수) · 절대적 무한
계산가능성 이론 튜링 기계 · 바쁜 비버 · 정지 문제 · 재귀함수 · 계산
정리
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 퍼스의 항진명제 · 굿스타인 정리 · 불완전성 정리 · 힐베르트의 호텔 · 연속체 가설
기타
예비사항( 약어 및 기호) · 벤 다이어그램 · 수학철학 }}}}}}}}}}}}


12.1.1. 관련 틀

연산
Numbers and Operations
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=#765432> 수 체계 자연수 ( 홀수 · 짝수 · 소수 · 합성수 ) · 정수 · 유리수 ( 정수가 아닌 유리수 ) · 실수 ( 무리수 · 환원 불능 · 초월수 ) · 복소수 ( 허수 ) · 사원수
표현 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자 ) · 기수법 · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법 ) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분 ) · 소수 ( 무한소수 )
연산 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈 ) · 역수 · 절댓값 · 제곱근 ( 이중근호 ) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 ) · 검산
방식 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기
용어 이항연산 · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙
기타 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 ) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2 ) · 0으로 나누기 · 0의 0제곱 }}}}}}}}}

12.1.2. 함수 관련 틀

초등함수
Elementary Functions
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
대수함수 다항함수 ( 상수 · 1차 · 2차 · 3차 · 4차 · 추론 · 공식 ( 길이 · 넓이 ) · 소수생성) · 유리함수 · 무리함수
초월함수 지수함수( 확률밀도함수 · 허수지수함수 ) · 로그함수 ( 복소로그함수 ) · 삼각함수 · 역삼각함수 · 쌍곡선 함수 · 역쌍곡선 함수 }}}}}}}}}

12.1.3. 도형 관련 틀

평면기하학
Plane Geometry
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all; letter-spacing: -1px"
<colbgcolor=#765432> 공통 도형 · 직선 ( 반직선 · 선분 · 평행 ) · ( 맞꼭지각 · 동위각 · 엇각 · 삼각비 ) · 길이 · 넓이 · 다각형 ( 정다각형 · 대각선 ) · 작도 · 합동 · 닮음 · 등적변형 · 삼각함수 ( 덧셈정리 ) · 접선 · 벡터
삼각형 종류 정삼각형 · 이등변삼각형 · 부등변삼각형 · 예각삼각형 · 직각삼각형 · 둔각삼각형
성질 오심 ( 관련 정리 · 구점원 ) · 피타고라스 정리 · 사인 법칙 · 코사인 법칙 · 헤론의 공식 · 신발끈 공식 · 스튜어트 정리 · 우산 정리 · 오일러 삼각형 정리 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 체바 정리 · 사영 정리
기타 세모 모양 · 평범한 삼각형 · 젤곤 삼각형
사각형 정사각형 · 직사각형 · 마름모 · 평행사변형 · 사다리꼴 · 등변 사다리꼴 · 연꼴 · 네모 모양
오각형 · 육각형 · 칠각형 · 팔각형 ( 정팔각형 ) · 구각형 · 십각형 · 십일각형 · 십이각형
단위원 · 원주율 · · 부채꼴 · 할선 · 활꼴 · 방정식 · 원주각 · 방멱 정리 · 톨레미 정리
원뿔곡선 포물선 · 타원 · 쌍곡선 · 파스칼 정리
기타 유클리드 · 보조선 · 펜로즈 타일 · 제곱근의 앵무조개 · 픽의 정리 · 논증 기하학 · 해석 기하학 · 3대 작도 불능 문제 }}}}}}}}}

12.1.4. 차원 관련 틀

차원
Dimension
<colbgcolor=#efefef,#2d2f34> 구분 0차원 1차원 2차원 3차원 [math(\boldsymbol{n})]차원
위상 입체 초입체
측도 셈 측도 길이 넓이 부피 초부피
유클리드 공간 민코프스키 시공간 측도론

13. 관련 어록


All is number
모든것은 수다.
- 피타고라스
논리학은 수학의 청년 시대이고, 수학은 논리학의 장년 시대이다. 출처1 출처2
- 버트런드 러셀
The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age.
모든 수학이 기호논리학이라는 사실은 가장 위대한 발견들 중 하나다.
- 버트런드 러셀
The mathematician's patterns, like the painter's or the poet's, must be beautiful; the ideas, like the colors or the words, must fit together in a harmonious way. Beauty is the first test; there is no permanent place in the world for ugly mathematics.
수학자의 패턴은 화가나 시인들의 작품처럼 아름다워야한다. 색체와 단어처럼 수학자의 아이디어도 조화로운 방식으로 어울려야 한다. 수학에서 가장 먼저 살펴봐야 할 것은 아름다움이다. 왜냐하면 이 세상에 추한 모습의 수학이 영원히 자리잡을 곳이란 존재하지 않는다.
- G. H. 하디
Das Wesen der Mathematik liegt in ihrer Freiheit.
수학의 본질은 그 자유로움에 있다.
- 게오르크 칸토어(Georg Cantor)
수학에는 왕도[54]가 없다.[55]
- 유클리드
수학은 실로 굉장한 학문이네. 그리고 여러모로 우리에게 유용하네. 다만 장사꾼의 심정으로서가 아니라 철학자의 정신으로 숭상하게 되면 말이네.
- 소크라테스[56]
먼저 수학을 철저히 공부하지 않고는 아무도 하느님과 인간의 일들을 인식할 수 없습니다.
- 히포의 아우구스티누스
기하학(수학)을 모르는 자는 나의 아카데미아에 들어올 생각하지마시오.
- 플라톤
수학 없이 할 수 있는 것이 아무것도 없습니다. 여러분 주변에 모든 것이 수학입니다. 주변에 모든 것이 숫자입니다.
- 샤쿤탈라 데비[57]
가우스는 수학은 과학의 여왕이고 정수론은 수학의 여왕이라 칭한 바 있다. 그러나 여기서 과학이란 독일어 단어 Wissenschaft를 번역한 것인데 Wissenschaft는 이공계열만이 아닌 학문 전반을 통칭한다. 즉, “수학은 학문의 여왕, 정수론은 수학의 여왕”이란 문장이다.

세종대왕은 과학이나 역법을 연구하기 위해 수학을 직접 공부하기도 했는데 수학을 공부하면서 “수학은 왕이 배울 학문이 아닐지도 모르나 이 또한 성인이 지정한 것이므로 알고자 한다”라는 말을 남겼다고 한다.

칸토어는 “수학의 본질은 자유다”라는 아주 유명한 말을 남겼다. 수학을 연구하는 방향은 어느 방향으로 연구해도 수학이 될 수 있다는 뜻 정도다.[58]

한편 수학의 황제 힐베르트는 자신의 연설에서 “제가 살아있는 동안 리만 가설은 증명될 것이며 페르마의 마지막 정리는 여기 앉아계신 관중들의 아이들이 죽기 전에 증명될 것이고 222^{\sqrt{2}} 초월수인지 아닌지는 우리의 몇 세대가 지나더라도 증명이 되긴 어려울 것입니다”라는 말을 남겼다. 그러나 이 예상은 ‘정반대로’ 진행됐는데 마지막 문제는 힐베르트가 죽기 전인 1930년에 증명되었고[59], 페르마의 마지막 정리는 1995년에 증명되었다.[60] 그리고 끝판왕 리만 가설은 아직 증명되지 않았다.

천재 수학자이면서 다양한 학문에 기여한 존 폰 노이만은 말년에 수학에 대해 얼마나 아는 것 같냐는 질문에 신중히 고민하다가 '"28%"'라고 대답한 일화가 있다. 이 일화에서 특이할 만한 점은, "나는 수학에 대해 잘 아는 편이다"라거나 "수학에 대해 많이 아는 것 같지 않다."라고 두리뭉실하게 이야기한 것이 아닌, 적어도 당시 수학에서의 100%가 어느정도인지 윤곽을 파악하고 구체적인 수치로 나타냈다는 것이다.

14. 관련 캐릭터

천재적인 면이나 괴짜적인 면을 부각시키려는 의도 정도로 픽션상에서는 캐릭터의 취미라기보다는 달고 사는 것 정도로 종종 나오는 경우도 있다. 아래는 그 예시. 수학교사 캐릭터에 관해서는 수학교사 문서 참조.

[1] maths, math라고도 지칭한다. [2] 실제로 해석학, 위상수학, 수리 논리학 같은 걸 보면 '이게 숫자랑 무슨 관련이 있지?' 하고 혼란을 겪을 수 있다. 그나마 해석학은 숫자를 은근히 보는 것에 비해, 위상수학과 수리논리학은 숫자는 거의 볼 수 없고 오히려 국어과, 그중에서 작문과 비슷하다는 느낌이 강하다. [3] 물론 이 정의도 심화과정에서는 들어맞지 않는데, 공리적 집합론이나 범주론, 모형론처럼 고도로 추상화된 분야까지 들어가면 숫자는 거의 쓰이지 않게 되기 때문이다. [4] 서양 일반인들 사이에서는 '산수'와 '수학' 간의 영역 구분(상하위)이 명확하다. 반면에 동양 일반인들 사이에서는 '수학=산수'로 동일시해버린다. 산수는 수학의 수많은 영역 중 하나일 뿐이라는 걸 알아둘 필요가 있다. 수능수학만 생각해봐도 산수가 차지하는 비중은 거의 없다. 대부분은 교과서의 수학적 개념을 떠올리고 계산은 답을 도출하기 위해 ‘어쩔수 없이’ 하는 것일 뿐이다. [예] 새 이름(독수리가 그 일종), 고치다(수리하다), 수리수문학(물과 강둑에 대해서 다루는 학문) [6] 2009 개정 교육과정에서는 수학Ⅱ는 ' 미적분Ⅰ'였으나 2015 개정 교육과정 이후엔 ' 수학Ⅱ'으로 바뀌었다. [7] 2009 개정 교육과정에서는 미적분)은 ' 미적분Ⅱ'였으나 2015 개정 교육과정 이후엔 ' 미적분'으로 바뀌었다. [8] 2009 개정 교육과정에서는 기하는 ' 기하와 벡터'였으나 2015 개정 교육과정 이후엔 ' 기하'으로 바뀌었다. [9] 그나마 icm 최초의 동양인 수리논리학분야 초청강연자인 연세대학교 수학과 김병한 교수의 귀국과 한국수리논리학회의 발전 등으로 인해 조금 숨통이 트여가고 있긴 하다. [10] curve(곡선), surface(곡면), polynomial equation(다항방정식으로 나타낼 수 있는 곡선, 곡면 등) 등이 이에 속한다. [11] 역은 성립하지 않는다. 칸토어 집합은 셀 수 없는 무한집합이지만 측도가 0이다. [12] 비슷한 예로 심리학도 이러한 논란이 많은 학문인데 한국에서는 문과로 분류하지만 뇌의학 같은 분야와의 관계를 많이 집어넣어 이과로 분류하는 국가/대학도 많다. 아니 한국에서도 국립중앙도서관에서는 심리학 도서가 자연과학 서가에 꽂혀있다. 통계학과가 문과로 편제된 고려대학교의 도서관에서도 통계학 서적을 자연과학 서적으로 분류한다. [13] http://wiki.hash.kr/index.php/%EB%8F%99%ED%98%95%EC%95%94%ED%98%B8 [14] http://wiki.hash.kr/index.php/%EC%96%91%EC%9E%90%EB%82%B4%EC%84%B1%EC%95%94%ED%98%B8 [15] 제임스 와트의 원심 조속기, Harold Black의 OP amp에 네거티브 피드백을 가한 시도, 항공공학, 기타 등등. [16] 로봇, 항공공학, 전력 스마트 그리드 등 [사실] 제어공학과 제어이론은 이 두 단어의 의미와 차이가 엄밀하고 표준적으로 잘 정의된 단어는 아니다. 그래도 일반적인 용례를 확인하고 싶다면 위키피디아의 Control Engineering과 Control Theory 항목을 참고하도록 하자. [18] 사실 이쯤되면 이러한 연구에서 다루는 시스템들은 실제 세상에서 접하기 어려운 가상의 것들에 가까워지는 경우가 많다. [19] https://www.lgsl.kr/sto/stories/76/IQEX2011010009 [20] http://www.tiem.utk.edu/~gross/bioed/webmodules/DNAknot.html [21] https://en.wikipedia.org/wiki/Topoisomerase [22] https://en.wikipedia.org/wiki/DNA_supercoil [23] http://medipharmhealth.co.kr/news/article.html?no=29319 [24] 문학은 예술이고 언어학은 과학이다. [25] 당시 프린스턴 대학은 이것을 인정하지 않아 그는 결국 수학계를 떠나지만, 1992년 지루한 소송 끝에 드디어 수학 박사 학위를 받을 수 있었다. [26] https://en.wikipedia.org/wiki/Set_theory_(music) [27] 공대 교육과정으로 경제, 경영 등 문과에서 배우는 통계학과 다르며, 수리통계학의 응용 버전에 가깝다. [28] 수리통계학이나 공대의 통계학과 다르게 미분적분학을 배우지 않았다는 가정 하에 통계학의 기초와 활용에 대해 다룬다. [29] 전기전자공학과 계열에서 흔히 확률과 랜덤 프로세스라는 과목으로 불리기도 한다. 산업공학과 등에서는 OR 확률 등으로 부르기도 한다. [30] 참고로 중국 내에서만 수상하는 Chern Prize 라는 상도 있다. [31] https://en.wikipedia.org/wiki/Breakthrough_Prize_in_Mathematics [32] https://en.wikipedia.org/wiki/Shaw_Prize [33] https://en.wikipedia.org/wiki/Oswald_Veblen_Prize_in_Geometry [34] https://en.wikipedia.org/wiki/Cole_Prize [35] https://en.wikipedia.org/wiki/B%C3%B4cher_Memorial_Prize [36] https://en.wikipedia.org/wiki/Fulkerson_Prize [37] https://en.wikipedia.org/wiki/Salem_Prize [38] https://en.wikipedia.org/wiki/Lo%C3%A8ve_Prize [39] https://en.wikipedia.org/wiki/Rollo_Davidson_Prize [40] https://en.wikipedia.org/wiki/Association_for_Symbolic_Logic [41] https://en.wikipedia.org/wiki/Hausdorff_Medal [42] https://en.wikipedia.org/wiki/Fermat_Prize [43] https://en.wikipedia.org/wiki/Ostrowski_Prize [44] https://en.wikipedia.org/wiki/Clay_Research_Award [45] https://en.wikipedia.org/wiki/European_Mathematical_Society [46] 최초의 기계식 계산기로 여겨지는 파스칼 계산기를 발명했다. 파스칼 계산기는 덧셈과 뺄셈이 가능하며, 뺄셈은 보수법을 사용해 계산한다. [47] 이진법을 발명하였고, 덧셈과 뺄셈만 가능한 파스칼의 계산기에서 더 나아가서 곱셈과 나눗셈도 가능한 라이프니츠 계산기를 발명하였다. [48] 차분기관 해석기관 [49] P-NP 문제를 제안한 것으로도 유명하다. [50] https://en.wikipedia.org/wiki/International_Prize_in_Statistics [51] https://en.wikipedia.org/wiki/COPSS_Presidents%27_Award [52] https://dl.dongascience.com/magazine/view/S202011N020 [53] 당연히 수학을 연구한다고 노벨문학상을 받지는 않는다. 자연과학이나 경제학과는 달리 문학 수학은 연결점을 찾기 어려운 분야이기 때문에 그런 의미에서는 문이과 양쪽에서 뛰어난 업적을 남긴 버트런드 러셀이 수학자이면서 노벨문학상을 받은건 정말 특이한 케이스이다. 물론 버트런드 러셀 이외에 문학적 능력을 가진 수학자가 없는건 아니다 예를들면 오마르 하이얌, 루이스 캐럴, 루디 러커 등이 있다. [54] 어떤 일을 쉽게 해결하기 위한 방도. 쉽게말해 꼼수. [55] 본래는 "기하학에 왕도가 없다"이다. [56] 플라톤의 <국가론>에서 소크라테스가 한 말이므로 플라톤의 생각으로 봐도 무방하다. [57] Shakuntala Devi 1929~2013. 인도의 저술가 [58] 아이러니한 사실은 어떠한 수학을 시작하기 위해서는 먼저 공리가 필요한데 이는 ‘제한’ 이 필요하다는 사실과 비슷하다. 즉 수학의 분야를 추가시키려면 제한을 추가해야 한다는 소리. 더욱 아이러니한 건 이 제한들을 조금만 바꿔도 또 다른 수학이 될 수 있으므로 제한을 가하는 방식 자체의 자유도 존재한다. 즉, 여기서도 칸토어의 명언이 적용된다. 규범 하에서의 자유라고 이해할 수 있다. 현실에서도 꼴리는 대로만 살면 자유가 아니라 방종이라고들 하잖는가. 규범 아래에서 논리성만 보장되면 무엇이든 가능한데 규범부터가 근본적으로 마음대로 정할 수 있는 것이다. [59] 더 일반적인 경우인 Gelfond–Schneider theorem은 1934년에 증명됨. [60] 갓난아이 관중이 있었다면 흰머리 훌훌 날리는 할머니, 할아버지가 되었을 때 증명 소식을 들었을 수도 있다. [61] 수학에 관한 천재라고 소개되며 대외적인 직업은 수학 교수였다. [62] 소설 형태의 수학 교양서인 만큼 등장인물 대다수가 상당한 수준의 수학 실력을 보유하고 있다. [63] 수학 영재라고 소개되고 작중에서도 수학적으로 대단한 활약을 하지만... 실제로는 말이 안 된다. 문서 참조. [64] 일단 직업은 수학자지만 별 관련은 없다. [65] 일본 계산콘테스트 우승자, 공 각도계산부터 선수가 멈출 수 있는 위치까지 계산한다. [66] 수학은 신의 언어라며 칭송한다. 실제로 작중에 잠깐 지나가는 장면을 보면 정말 상당한 실력을 보유한듯. [67] N의 초기 설정에 따르면 수학의 마술사라 불릴 정도로 수학에 뛰어난 천재다.

분류