최근 수정 시각 : 2022-11-29 02:45:02

푸리에 변환

해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수( 변분법) · 다변수 ( 동차 · 숨은 함수( 다가 함수)) · 그래프 · 대칭 · 증감표 · 극값 · 절편 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙 · 스펙트럼 정리
극한 엡실론-델타 논법 · 수열의 극한 · 수렴 ( 균등수렴) · 발산 · 부정형 · 어림( 유효숫자) · 근방 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미적분 미분 도함수 ( 편도함수) · 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점) · 미분형식 · 미분방정식 ( 풀이) · [math(boldsymbolnabla)] · 라그랑주 승수법
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 정적분 ( 예제) · 이상적분 · 중적분 ( 선적분 · 면적분 · 야코비안) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 ( 선적분의 기본정리) · 평균값 정리 ( 롤의 정리) · 스토크스 정리 ( 발산 정리 · 그린 정리) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 · 아다마르 변환) · 2학년의 꿈 · 리시 방법 · 야코비 공식

해석
실수 · 좌표계 · 측도론 ( 측도 · 르베그 측도) · 실직선 · 유계( 콤팩트성) · 칸토어 집합 · 비탈리 집합
복소
해석
복소수( 복소평면) · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 해석기하학 · 미분기하학 · 해석적 정수론 ( 소수 정리 · 리만 가설미해결) · 벡터 미적분학 · 확률론 ( 확률변수 · 중심극한정리) · 수치해석학
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 카오스 이론 · 오일러 방정식 · 퍼지 논리 · 거리함수 · 분수계 미적분학 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학
난제 양-밀스 질량 간극 가설 · 나비에 스토크스 방정식의 해 존재 및 매끄러움 }}}}}}}}}

삼각함수 · 쌍곡선함수
Trigonometric Functions · Hyperbolic Functions
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
기본 개념 기하학{ 평면기하학( 삼각형 · 삼각비 · · 쌍곡선)} · 해석학{ 좌표계 · 복소평면 · 함수( 초월함수 · 특수함수)}
삼각함수 사인곡선( 위상수학자의 사인곡선) · 역함수 · 도함수 · 역도함수 · 관련 함수 · 삼각함수의 덧셈정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리 · 오일러 공식 · 푸리에 해석( 푸리에 변환) · 삼각 적분 함수 · 구데르만 함수 · 프레넬 적분 함수 · 디리클레 함수 · 볼테라 함수 · 에어리 함수 · 야코비 타원 함수
쌍곡선함수 현수선 · 쌍곡선 적분 함수 · 구데르만 함수 }}}}}}}}}

1. 정의
1.1. 슈바르츠 공간에서1.2. L1 공간에서1.3. L2 공간에서1.4. 조절 분포 공간에서
2. 다른 적분변환과의 관계3. 심화
3.1. 역변환(inverse transform)3.2. 이산 푸리에 변환
3.2.1. 선형성 정의3.2.2. 이산 시간 푸리에 변환3.2.3. 고속 푸리에 변환
3.2.3.1. 쿨리-튜키 알고리즘
3.2.4. 단시간 푸리에 변환
4. 응용
4.1. 이산 범위에서의 활용
5. 관련 문서

1. 정의

Fourier transform
3Blue1Brown의 설명 영상. 주기함수에 대한 개념과 오일러 공식, 복소평면 정도만 숙지하고 있으면 이해가 가능하다.

함수 [math(h:\mathbb{R}\to\mathbb{C})]에 대해 [math(\hat{h} = F\left[h\right]:\mathbb{R}\to\mathbb{C})]라는 함수를
[math(\displaystyle \hat{h}(t) = F\left[h\right]\left(t\right) \equiv \int_{-\infty} ^{\infty} e^{-2 \pi itx} h\left(x\right) \mathrm{d}x \quad \left(i = \sqrt{-1}\right))]

로 정의하고, 위 변환 [math(\hat{h}, F[h])]를 함수 [math(h)]의 푸리에 변환이라 정의한다.[1][2] 고차원에서도 비슷하게 정의할 수 있다. 푸리에 변환을 [math(\int e^{-itx} h\left(x\right) \mathrm{d}x)]로 정의하는 수학자들도 있다.[3] 이 경우 함수의 미분과 푸리에 변환 사이의 관계가 깔끔하여 ([math(F\left[h'\right](t)=itF\left[h\right](t))]) 편미분 방정식에서 주로 사용한다. 물리학에서는 보통 시간 [math(t)] 의 푸리에 도메인으로 각진동수인 [math(\omega )] 를 사용하고, 위치 [math(x)]의 푸리에 도메인으로 wave number [math( k)]를 사용한다.

위 적분식이 임의의 함수 [math(h)]에 대해 잘 정의되지는 않는다(이를테면 [math(h(x)=1)]인 경우). 하지만 대부분의 경우 적분식을 improper 리만적분으로 해석하거나, [math( h(x)e^{-\epsilon x^2})]의 푸리에 변환을 먼저 계산한 뒤 [math( \epsilon \to 0)] 극한을 보내는 방법으로 해결이 된다. 어찌 됐건, 이런 자잘한 문제를 해결하기 위해 푸리에 변환의 정의를 엄밀하게 할 필요가 있는데, 아래를 참고하면 된다.

1.1. 슈바르츠 공간에서

슈바르츠 공간 [math(\mathcal{S})]는 무한 번 미분 가능하며 모든 도함수들이 빠르게 감소하는 함수들의 공간이다. 이 경우 적분식으로서의 푸리에 변환이 잘 정의된다. 특히, [math(F:\mathcal{S}\to \mathcal{S})]는 일대일대응이 되며, 모든 [math(h,g\in \mathcal{S})]에 대해
[math(\displaystyle \int_{-\infty}^{\infty} h(x)\bar{g}(x) \mathrm{d}x = \int_{-\infty}^{\infty} F[h](t) \overline{F[g]}(t) \mathrm{d}t)]
가 성립하는 Plancherel 정리를 만족시킨다.

1.2. L1 공간에서

먼저 르베그 공간에 대해 알아야 한다. (주석참조)[4] [math( L^{1} )]함수에 대해 적분식로서의 푸리에 변환은 잘 정의되나, 변환된 함수가 [math(L^{1})] 에 들어가지 않을 수 있고, 실제로 [math(F:L^{1} \to L^{\infty})]임만 알 수 있다. 슈바르츠 공간에서와는 다르게, [math(F:L^{1} \to L^{\infty})]는 전사함수가 아니다. [5]

1.3. L2 공간에서

이 성질과 [math(\mathcal{S}\subset L^{2})]의 조밀함에 의해 [math(F:\mathcal{S}\to \mathcal{S})]는 [math(F:L^{2}\to L^{2})] 귀일적 작용소로의 유일한 확장을 가진다. 이를 통해 [math(F:L^{2}\to L^{2})]가 잘 정의된다.

1.4. 조절 분포 공간에서

[math( \mathcal{S}' )] 공간은 슈바르츠 공간 [math( \mathcal{S} )]의 쌍대공간으로서, 약한-* 위상을 가진다. [math( \mathcal{S}' )]의 원소는 조절분포라 불린다. 조절분포 [math( h \in \mathcal{S}' )]의 푸리에변환 [math( F[h] \in \mathcal{S}' )]은 Plancherel 정리에 의해 다음과 같이 정의되는 것이 자연스럽다.
[math(\langle F[h], \varphi \rangle = \langle h, F[\varphi] \rangle,\qquad \forall \varphi\in \mathcal{S})]
이 정의를 이용하면 1의 푸리에 변환이 디랙-델타 분포임을 알 수 있다.

2. 다른 적분변환과의 관계

이 푸리에 변환은 라플라스 변환과 매우 비슷하다. 당장 위의 [math(t)]에 [math(is)]를 넣어보시라. 함수의 미분은 푸리에 변환을 하면 변수와의 곱이 되고, 곱은 합성곱(컨볼루션, convolution)으로 옮겨진다. 따라서 미분방정식의 라플라스 변환 풀이는 그대로 푸리에 변환 풀이로 고칠 수 있다. 하지만 라플라스 변환보다 훨씬 좋은 점은 역변환이 매우 쉽다는 것이다. 아니 자기 자신이 그냥 역변환이다! 엄밀하게는 [math(F^{2} h\left(t\right) = F\left[F\left[h\right]\right]\left(t\right) = h\left(-t\right))]가 성립. [6]

삼각함수로 유도되는 변환식이기 때문에 하틀리 변환[7]과도 상당히 관련되어 있다.

3. 심화

3.1. 역변환(inverse transform)

푸리에 변환의 역변환 [math(F^{-1} \left[g\right]\left(x\right) = \int e^{2\pi itx} g\left(t\right) dt)]에서 [math(g = F\left[h\right])]로 놓으면 [math(h\left(x\right) = \int e^{2\pi itx} F\left[h\right] dt)]가 되고, 이는 [math(h\left(x\right))]를 지수함수 [math(e^{2\pi itx})] 들의 '연속적 일차결합'으로 나타낼 수 있다는 의미이다. 이러한 취지에서 푸리에 급수와 푸리에 변환을 같이 묶어 푸리에 해석이라 말할 수 있는 것.[8]

3.2. 이산 푸리에 변환

이산수학
Discrete Mathematics
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
{{{#!wiki style="letter-spacing: -1px"
이론
기본 대상 수학기초론( 수리논리학 · 집합론) · 수열 · 조합 · 알고리즘 · 확률
다루는 대상과 주요 토픽
수열 등차수열( 뛰어 세기) · 등비수열 · 계차수열 · 조화수열 · 귀납적 정의( 점화식) · 급수 · 규칙과 대응 · 규칙 찾기 · 피보나치 수열 · 읽고 말하기 수열 · 생성함수
조합 경우의 수( 공식) · 순열( 완전순열 · 염주순열) · 치환 · 분할( 분할수) · 최단거리 · 제1종 스털링 수 · 제2종 스털링 수 · 카탈랑 수 · 벨 수 · 라흐 수 · 포함·배제의 원리 · 더블 카운팅 · 조합론
그래프 수형도 · 인접행렬 · 마방진 · 마법진 · 한붓그리기( 해밀턴 회로) · 쾨니히스베르크 다리 건너기 문제
확률 사건 · 가능성 · 확률변수 · 확률분포( 정규분포 · 이항분포 · 푸아송 분포 · 카이제곱분포 · t분포) · 조건부확률 · 기댓값 · 도박사의 오류 · 몬티 홀 문제 · 뷔퐁의 바늘
기타
P-NP 문제미해결 · 4색정리 · 이항정리( 파스칼의 삼각형) · 이산 푸리에 변환 · 비둘기 집의 원리 · 상트페테르부르크의 역설 · 투표의 역설 · 에르고딕 가설미해결 · 콜라츠 추측미해결 · 시행착오 ( 예상과 확인)
관련 문서
논리학 관련 정보 · 수학 관련 정보 · 컴퓨터 관련 정보 · 틀:수학기초론 · 틀:이론 컴퓨터 과학 }}}}}}}}}}}}




파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
DFT는 이곳으로 넘어옵니다. 양자물리학의 밀도범함수 이론(Density Functional Theory)에 대한 내용은 밀도범함수 이론 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
상기한 푸리에 변환을 이산적인 범위내에서 적용하는 방법이 존재한다. 이를 이산 푸리에 변환(Discrete Fourier Transform, DFT)이라고 한다. 이산 푸리에 변환은 기본적인 푸리에 변환이 정의역이 연속적인 함수에 사용되는 것에 비해, 이산 푸리에 변환은 어떤 함수를 완벽하게 변환하는 데에 있지 않고, 이산적인 특정한 데이터에 대한 푸리에 변환값을 계산하는 데에 있으므로, 주로 전해석함수가 아닌 함수[9]에 푸리에 변환을 적용하고 싶을 때 사용한다.

이산 푸리에 변환은 다음과 같은 식으로써 정의된다.

Discrete Fourier Transform (DFT)
[math(\displaystyle X[k]= \sum_{n=0}^{N-1} x[n] e^{-i\frac{2 \pi k n}{N}} \quad \quad )]

Inverse Discrete Fourier Transform (IDFT)
[math(\displaystyle x[n]=\dfrac{1}{N} \sum_{k=0}^{N-1} X[k] e^{i\frac{2 \pi k n}{N}} \quad \quad )]

이산 푸리에 변환은 변환의 목적이 전해석 함수의 완벽한 변환이 아닌 특정적인 이산적 데이터의 변환을 추구하므로, 적분 기호 [math(\int)]대신, 합 기호 [math(\sum)]를 쓴다. 또한 영점으로부터 변환을 하는 범위가 유한하므로 추상적인 [math(\infty)] 대신 유한한 임의의 정수 N-1을 범위로 설정한다.

이산 푸리에 변환을 통해 시간영역의 신호를 주파수영역의 분포로 나타내는 파워스펙트럼(power spectrum) 또는 파워 스펙트럼 밀도(power spectral density)로 나타낼 수 있으며, 이 때 주파수 해상도를 식으로 나타내면 [math(\displaystyle \Delta f = \dfrac{f_s (샘플링 주파수)}{N (이산 데이터 수)} {Hz})]가 된다.

3.2.1. 선형성 정의

푸리에 해석은 지수 함수와 함수 공간간에 선형결합이 정의된 해석이다. 그러므로, 이산 부분의 집합에서도 마찬가지로 푸리에 해석을 적용하면, 내적인 직교화 과정은 각 지점에서 계산된 곱의 합이 영이되게 함으로써, 고유함수가 직교화 간격의 공간 지점과 동일한 이산 집합에서 직교화가 된다는 특징이 존재한다.
\displaystyle \langle f, g\rangle = \int_{x_0}^{x_0+P} f(x) \overline{g(x)} dx </math>
자연수 집합 N에 대한 [math(x_k)]를 [math(\displaystyle x_k=\dfrac{2\pi k}{N})] [10]로 정의하고, 임의의 정수 n과 [math(x_k)]로 정의되는 함수 [math(\phi_n(x))]와 지수함수 [math(e^{inx})]가 같다고 가정하자. 그러므로 선형결합으로 정의된 푸리에 해석을 적용하면, 이산 집합에서의 푸리에 변환도 다음과 같이 정의된다.

\displaystyle \langle \phi_n, \phi_m\rangle = \sum_{k=0}^{N-1} \overline{\phi_n(x_k)} \phi_m(x_k) </math>

여기서 [math(\displaystyle x_k=\dfrac{2\pi k}{N})]임을 다시한번 상기하면,
\displaystyle \langle \phi_n, \phi_m\rangle = \sum_{k=0}^{N-1} e^{\frac{2\pi ik(n-m)}{N}} = \sum_{k=0}^{N-1} r^k </math>

r=1일때, 위 식은 N값을 가지게되거나, [math(\sum)]의 유한 합 공식 [math(\frac{1-r^{N}}{1-r})]이라는 유한한 기하급수이다. 하지만, [math(r^{N}=e^{2\pi i(n-m)})]이고, n과 m은 제한된 정수 값이기 때문에, n과 m이 서로 같거나 다를때 [math(r^N=1)]이 정의된다. 그러므로 크로네커 델타의 정의를 이용하면,
\displaystyle \langle \phi_n, \phi_m\rangle =N \sum_{n=-\infty}^{\infty} \delta_{m-n},nN</math>

크로네커 델타를 이용한 무한합은 0이 아니지만, m-n이 N의 배수가 아니라면 위 식의 모든 무한합은 0이다. 하지만 함수 [math(\phi_n)]가 N 지점에서 정의되어, N이 유일하게 선형 비의존적이기때문에 위의 식은 복잡한 편이다. 그러므로,
\phi_{n+N}(x_k)=e^{\frac{2\pi i(n+N)k}{N}}=e^{\frac{2\pi ink}{N}}=\phi_n(x_k) </math>

0과 N-1사이 범위에서 n과 m의 값을 제한할수 있다. 그러므로 직교화 관계가 다음과 같이 정의된다.
\displaystyle \langle \phi_n, \phi_m\rangle =N\delta_{mn}</math>

3.2.2. 이산 시간 푸리에 변환

Discrete Time Fourier Transform (DTFT)
[math(\displaystyle X(\omega) = \sum_{n=-\infty}^{\infty} x\left[n\right] \,e^{-i \omega n})]

DTFT는 디지털과 같은 이산적인 데이터의 집합에 푸리에 변환을 적용하는 것이다. 여기서 [math(\omega)]는 디지털 각 주파수라 불리기도 하는데, 단위는 라디안/샘플이다. 푸리에 변환과 DTFT와의 관계는 라플라스 변환과 Z-변환의 관계와 유사하다고 볼 수 있다.

DTFT는 변환 결과물이 주기적이며 연속적이라는 특징이 있다. 즉 시간 영역에서는 이산적이지만 주파수 영역에서 연속적이다.
다만 컴퓨터 상에서는 잘 사용되지 않는데, 그 이유는 변환이 함수형이고, 무한급수를 해석해야 하고, 역변환이 인테그럴이기 때문에 통상적인 프로그래밍[11]의 범주를 벗어나기 때문이다.

3.2.3. 고속 푸리에 변환

Fast Fourier Transform (FFT)

이산적인 [math( n )]개의 데이터가 주어질 때 DFT는 [math( \mathcal{\Theta}(n^2) )]에 돌아가기 때문에 n이 커지면 사용하기 곤란한데, FFT는 이를 [math( \mathcal{\Theta}(n \log n) )]의 연산량만으로 계산하는 알고리즘이다. 주로 분할 정복법을 이용한다.

1965년에 쿨리와 튜키가 개발한 쿨리-튜키 알고리즘이 많이 사용되며, 이 이외에도 Good-Thomas, Bruun's, Rader's, Bluestein's FFT 알고리즘 등이 존재한다.
3.2.3.1. 쿨리-튜키 알고리즘
Cooley-Tukey algorithm

이 알고리즘은 이미 이전에 여러 번 다른 수학자들에 의해 독립적으로 발견되었다가 잊혀져 왔으며, 거슬러 올라가면 가우스조차도 유사한 방법을 개발하여 사용하였다고 한다.

참고로 분할 정복시 입력값을 둘이 아닌 다른 수로 똑같이 나눠 계산하는 방법도 존재하지만, 둘로 나누는 편이 더 간단하다.[12] 따라서 입력값을 둘로만 나누면 되게 데이터 개수 [math(n)]를 2의 거듭제곱(64, 128, 256, ...)으로 두는 경우가 흔하다.

3.2.4. 단시간 푸리에 변환

Short-Time Fourier Transform (STFT)

DFT나 FFT는 "해당 신호의 전체 구간"에 대한 주파수 분석을 수행하므로, 만약 해당 신호의 주파수가 시간에 따라 계속 변한다면 [13] 해당 변화를 제대로 반영하기 어렵다는 단점이 있다.

이러한 한계를 극복하기 위한 것이 STFT로, DFT나 FFT를 수행한 신호에 일정한 시간 간격으로 "창함수 (window)"를 줌으로서, 해당 창함수 내에서는 신호의 주파수가 거의 일정(quasi-stationary)하다는 가정하에 창함수를 계속 옮겨가면서 주파수 분석을 함으로서, 시간에 따라 변하는 신호의 주파수 정보를 분석하는 것이다. 이것을 시각화한 것이 바로 스펙트로그램이다.

창함수는 사각형, 삼각형, 한, 해밍, 블랙맨, 카이저 등 다양한 종류가 있으며, 창함수에 따라 주파수 분석의 정밀도도 달라진다. 일례로 가장 쉬운 사각형 창함수는 DFT/FFT 상수에 1을 곱하는 임펄스 트레인, 그러니까 DFT를 그대로 가져가는 창함수이다.

창함수를 시간축으로 넓게 가져가면 주파수 해상도가 좋아지지만, 대신 시간 해상도는 낮아진다. 반면 창함수를 시간축으로 짧게 분석하면 시간 해상도가 좋아지지만, 반대로 주파수 해상도가 낮아진다는 단점이 있다. 참고로 주파수 해상도를 식으로 나타내자면 [math(\displaystyle \Delta f = c (창함수에 따른 상수) \dfrac{f_s (신호의 샘플링 주파수)}{L (창함수 너비)} {Hz})]이다. c값은 창함수에 따라 달라지며, 사각형은 c = 1, 한과 해밍은 c = 2, 블랙맨은 c = 4이다. 즉, 사각형 창함수에 너비를 1초로 잡았을 때를 기준으로 1 Hz 단위로 신호의 주파수 구분이 가능하다. 다른 예로 블랙맨 창함수로 1Hz단위로 신호의 주파수 구분을 하겠다면, 너비는 4초가 돼야 한다.

사각형을 제외한 다른 창함수의 경우, 양 끝단에서 spectral leakage가 일어날 수 있기 때문에 이를 극복하기 위해 창함수를 50~75% 간격으로 중첩(overlap)시킨다.

STFT를 이용한 스펙트로그램은 음성학이나 ARG 등 다양한 분야에 응용되고 있다.

4. 응용

물론 수학과에서도 다루는 내용이지만, 물리학과 전자공학 등에서 그 중요성이 더욱 커진다.

전자기파 주파수 같은 것이 들어 가는 분야라면 거의 필수적으로 사용된다. 푸리에 변환을 사용하는 근본적인 이유는 time domain에서 해석하기 힘든 신호를 frequency domain에서 쉽게 해석할 수 있기 때문이다(ODE를 풀 때의 라플라스 변환을 생각해보라) 가장 대표적인 것이 바로 통신공학인데 아날로그 통신의 기본인 AM, FM 등의 변조 기술들은 모두 어떠한 신호를 시간의 푸리에 변환인 주파수 도메인에서 다루는 것이다. 예컨대, AM에선 carrier frequency를 가진 cosine 함수를 메세지에 곱하는데, 이를 시간 도메인에서 바로 해석하기엔 그래프의 모양이 상당히 더럽다. 하지만 이를 푸리에 변환하면 cosine 함수의 푸리에 변환은 델타 함수므로 주파수 도메인에서 해석하면 손쉽게 해석할 수 있다.
당장 일렉기타의 꾹꾹이에서 파장변환의 차를 내서 쓴다. 의외로 실생활에서 많이 사용한다.!

MRI의 영상 구성 원리는 수소원자와 자기장에 대한 물리학적인 지식이 기본인데, 얻은 데이터를 처리하는 과정에서 k-space라는 가상공간을 사용한다. 푸리에 변환이 정보처리 과정에서 사용된다. MRI 영상 만드는데 많이 사용되는 변환은 sinc 함수가 변환된 사각파라는 것이다.[14]

4.1. 이산 범위에서의 활용

위에서 설명한 푸리에 변환이라는 특성이 그렇듯이 이산범위의 푸리에 변환도 전자공학에서도 많이 사용된다. 소리 등의 신호처리나 통신 시스템 등 많은 분야에 DFT의 원리가 적용되어 있다. 신호를 분석하고 가공, 처리하는데 있어 푸리에 변환의 중요도는 매우 높은데, 디지털 도메인에서 계산을 수행해야 하기 때문에 이산적인 데이터를 푸리에 변환하는 DFT를 사용해야 하기 때문이다. 다만 DFT 수식을 컴퓨터로 바로 계산하면 계산량이 매우 많기 때문에 분할 정복을 이용한 버터플라이 알고리즘인 FFT(고속 푸리에 변환)를 사용해서 DFT를 계산한다.

MP3 같은 음악 압축 알고리즘에서도 사용된다. MP3 의 압축 기법중에는 FFT 변환해서 사람이 듣기 힘든 고음역이나 저음역을 날려 버려서 데이터 양을 줄이는 방법이 포함되어 있다.

DFT와 친척뻘인 개념으로 이산 코사인 변환(DCT) 등이 있다.

양자 알고리즘에 사용되는 양자푸리에변환(QFT)도 이 DFT식을 바탕으로 한다.
[math(\displaystyle U_\text{QFT}(|y\rangle)=\sum_{x=0}^{Q-1} e^{-i\frac{2\pi x y}{Q}}|x\rangle \quad \quad )]
[math(\displaystyle U_\text{IQFT}(|x\rangle)=\frac{1}{\sqrt{Q}}\sum_{y=0}^{Q-1} e^{i\frac{2\pi x y}{Q}}|y\rangle \quad \quad )]
양자 컴퓨팅에서 QFT대신 IQFT를 양자 알고리즘의 레지스터로써 쓴다.

푸리에 해석이라는게 그렇듯이 DFT의 개념 자체는 굉장히 쉽지만, 독학하려고 한다면 약간 까다롭다. 푸리에 해석은 특정 함수의 주기성을 추상적인 범위에서 다루는 공리이다. 그래서 푸리에 해석을 설명하고자 할때 중요한 주기부분이 변수인 임의의 수식이고, 그에따라 고유 함수의 부호와 계수가 임의로 지정될수 있기 때문이다. 그래서 인터넷에 검색해보면 식이 다 제각각이다.

5. 관련 문서


[1] [math(\hat{h})]는 수학 쪽에서 많이 쓰이고 [math(F[h])]는 물리학 쪽에서 많이 쓰인다. [2] 지수 쪽에 변수를 작게 죽 적기가 까다로워 지수함수 부분을 [math(\operatorname{cis}(-2 \pi tx))]로 표기하기도 한다. [3] 전자공학에서는 [math(\displaystyle X(j\omega) = \mathcal{F}\left[x(t)\right] \equiv \int_{-\infty}^ {\infty} x(t) e^{-j \omega t} dt)] 또는 [math(\displaystyle X(f) = \mathcal{F}\left[x(t)\right] \equiv \int_{-\infty}^ {\infty} x(t) e^{-j2 \pi ft} dt)] 로 정의한다. [4] [math( 0 <p < \infty )]에 대해 [math( h\in L^{p} )]라는 것은 [math( \int_{-\infty}^{\infty} |h(x)dx|^{p}<\infty )]라는 것이고, [math( h\in L^{\infty} )]라는 것은 (대략) 함수 [math( h )]가 유계라는 것이다. 여기서 '대략''이라는 말이 붙은 것은 정의역 전체에서 유계가 아니더라도 정의역에서 측도 0인 어떤 집합을 뺀 영역에서 유계이면 되기 때문이다. [5] [math(F[h](t) = 1)]을 만족하는 함수 [math(h\in L^{1})]는 존재하지 않는다. [6] 주의: 앞에서 말한 [math(e^{-itx} \mathrm{d}x)]를 사용하는 다른 버전에서는 이렇게 두번 합성을 하면 상수 [math(2\pi)]가 붙는다. 이것을 해결하기 위해 푸리에 변환과 역변환 모두에 [math(1/\sqrt{2\pi})]를 곱해주거나, 역변환만 [math(1/2\pi)] 배를 해주는 서로 다른 관습이 있다. [7] 오일러 공식 대신 [math(\sin + \cos)]를 이용한 변환 [8] [math(\displaystyle x(t) = F^{-1}\left[X(j\omega)\right] \triangleq \frac{1}{2 \pi}\int_{-\infty}^ {\infty} X(j\omega) e^{j \omega t} d\omega)] 또는 [math(\displaystyle x(t) = F^{-1}\left[X(f)\right] \triangleq \int_{-\infty}^ {\infty} X(f) e^{j2 \pi ft} df)]로 역변환을 정의할 수도 있다. [9] 전해석함수(entire function)란 모든 구간에서 적분이 가능한 함수이다. [10] 단, [math((k=0,1,2,....,N-1))] [11] 컴퓨터 대수학 시스템 같은 인공지능 수준에서나 가능하다. [12] 아예 이렇게 둘로만 나누는 쿨리-튜키 알고리즘을 "FFT 알고리즘"이라고 부를 때가 많다. [13] 일례로, 삼각함수(sinusoid)의 진폭은 일정하고 진동수만 계속 변하는 신호를 처프(chirp)라 부른다. 좀 더 복잡한 예로, 음성신호도 시간에 따라 주파수가 변하는 신호이다. [14] 사각파를 푸리에 변환하면 sinc함수가 된다.