최근 수정 시각 : 2023-01-07 19:26:33

점근선

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin:0 -10px -5px;min-height:2em"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수( 변분법) · 다변수 ( 동차 · 숨은 함수( 다가 함수)) · 그래프 · 대칭 · 증감표 · 극값 · 절편 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리·토픽 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙 · 스펙트럼 정리
극한 엡실론-델타 논법 · 수열의 극한 · 수렴 ( 균등수렴) · 발산 · 부정형 · 어림( 유효숫자) · 근방 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리·토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열· 급수 규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리·토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미적분 미분 도함수 ( 편도함수) · 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점) · 미분형식 · 미분방정식 ( 풀이) · [math(boldsymbolnabla)] · 라그랑주 승수법
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 정적분 ( 예제) · 이상적분 · 중적분 ( 선적분 · 면적분 · 야코비안) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리·토픽 미적분의 기본정리 ( 선적분의 기본정리) · 평균값 정리 ( 롤의 정리) · 스토크스 정리 ( 발산 정리 · 그린 정리) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 · 아다마르 변환) · 2학년의 꿈 · 리시 방법 · 야코비 공식
실해석 실수 · 좌표계 · 측도론 ( 측도 · 르베그 측도) · 실직선 · 유계( 콤팩트성) · 칸토어 집합 · 비탈리 집합
복소해석 복소수( 복소평면) · 편각 · 코시-리만 방정식
정리·토픽 오일러 공식 ( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 해석기하학 · 미분기하학 · 해석적 정수론 ( 소수 정리 · 리만 가설미해결) · 벡터 미적분학 · 확률론 ( 확률변수 · 중심극한정리) · 수치해석학
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 카오스 이론 · 오일러 방정식 · 퍼지 논리 · 거리함수 · 분수계 미적분학 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학
난제 양-밀스 질량 간극 가설 · 나비에 스토크스 방정식의 해 존재 및 매끄러움 }}}}}}}}}

/ asymptote
파일:namu_erf(x)_그래프.png
점근선이 [math(\boldsymbol{y=\pm 1})]인 [math( boldsymbol{y={mathbf{erf}}(x)} )]의 그래프

어떠한 곡선에 대하여 곡선 위의 점이 무한히 원점에서 멀어질수록 그 점에서 한 직선과의 거리가 0에 한없이 가까워질 때[1], 점점(漸) 가까워지는(近) 선(線)이라는 뜻에서 그 직선을 해당 곡선의 점근선(漸近線)이라 한다.

그래프의 점근선이 생기는 대표적인 함수는 유리함수, 지수함수, 로그함수, 탄젠트함수 등이 있고, 이차곡선 중에서는 쌍곡선이 대표적이다.

한 곡선 [math(y=f(x))]의 점근선의 방정식이 [math(y=mx+n)]일 때, 상수 [math(m)], [math(n)]은 아래와 같이 구한다.

[math(\displaystyle \begin{aligned} m&=\lim_{x \to \pm \infty} \frac{f(x)}{x} \\ n&=\lim_{x \to \pm \infty} \{ f(x)-mx \} \end{aligned})]

해석적 정수론에서는 소수 정리에서 소수 계량 함수 로그 적분 함수 합성함수 [math(y = \pi(x)/{\rm li}(x))]의 점근선 [math(y=1)]을 다루며, 밀레니엄 문제의 하나인 리만 가설이 여기에 연관되어 있다.

미분기하학에서는 다른 뉘앙스로 쓰이는데, 곡면의 접벡터와 법벡터가 항상 수직인 곡선을 뜻한다.


[1] 물론 함수가 점근선의 값을 갖지 않아야 하는 법은 없다. 가령 아래의 프레넬 적분 함수는 점근선이 [math(y=\pm 1/2)]이지만, 함숫값이 [math(\pm 1/2)]인 점이 무수히 존재한다.
파일:나무_프레넬적분_그래프_NEW.png