1. 수학적 용어 分 母
수와
연산 Numbers and Operations |
|||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
<colbgcolor=#765432> 수 체계 | 자연수 ( 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수 ( 정수가 아닌 유리수) · 실수 ( 무리수 · 초월수) · 복소수 ( 허수) · 사원수 | |
표현 | 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법( 과학적 기수법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 · BEAF· 버드 표기법) · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수 ( #s-1 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수 { 유한소수 · 무한소수 ( 순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수 | ||
연산 | 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈) · 역수 · 절댓값 · 제곱근 ( 이중근호) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 · 이진로그) · 검산 · 연산자 · 교환자 | ||
방식 | 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자 | ||
용어 | 이항연산( 표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙 | ||
기타 | 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기( 바퀴 이론) · 0의 0제곱 | }}}}}}}}} |
denominator
나눗셈 a÷b = [math({a \over b})]에서 b가 0이 아닐때, a를 피연산자, b를 연산자라고 한다. 이 중, 연산자에 속하는 것을 분모라 한다. 분수로 나타낼 때에는 밑에 나타낸다.
분모의 종류에 따라서 그 수의 분류가 결정되는데, 인류는 선사(先史)부터 10진법을 써왔기 때문에, 일반적으로, 분모를 10의 거듭제곱의 꼴로 나타낼 수 있는가 없는가가 유한소수인지 순환소수인지를 결정하는 관건( 關 鍵)이 된다. 유리수에서, 분모를 소인수분해했을 때 2와 5만 나타나면 10진법으로 나타냈을 때 유한소수로 표현되고, 소인수분해했을 때 3이나 7 등, 2도 아니고 5도 아닌 소수가 나타나면 10진법으로 나타냈을 때 무한소수(순환소수)가 된다.
분모가 다르다면 분모를 같게 하는데는 통분한다고 한다. 통분은 단순한 자연수 뿐만 아니라, 다항식의 연산등에도 쓰인다.
분모가 무리수이긴 하나, 대수적인 수인 경우, 분모를 유리수의 범위로 표시하는 경우가 있는데, 이를 분모의 유리화라고 한다. 그러나, 분자만 무리수인 경우에는 유리화를 다시 할 필요가 없다. 왜냐하면 이미 유리화가 되어있기 때문. 즉, 분모가 초월수만 아니라면 대개 유리화가 가능하다.
분모란 이름이 붙은 이유는 분모와 분자로 이루어진 분수의 꼴이 마치 어머니(분모(母))가 아들(분자(子))를 업어주는 모습같다고 해서 그 아래에 있는 분모가 되었다.