최근 수정 시각 : 2024-12-11 00:56:57

점군

[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해) · 부등식( 절대부등식) · 방정식( /풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 대수적 무리수 · 초월수) · 초실수) · 복소수( 허수) · 사원수 · 팔원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론 · 분해체
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마· 반군· 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 텐서( 텐서곱) · 벡터 공간( 선형사상) · 가군(module) · 내적 공간( 그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 토포스 이론 · 타입 이론
대수 위상수학 연속변형성 · 사슬 복합체 · 호몰로지 대수학( 호몰로지 · 코호몰로지) · mapping class group · 닐센-서스턴 분류
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼 정리
표현론 실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}

''' 고체물리학· 응집물질물리학
'''
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px; min-height:calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
<colbgcolor=#056666><colcolor=#fff> 기반 전자기학 · 양자역학( 양자장론 · 이차양자화) · 통계역학 · 미분방정식 · 위상수학( 매듭이론)
결정학 고체 · 결정 · 결정 격자(브라베 격자) · 군론( 점군 · 공간군) · 역격자( 브릴루앙 영역) · 구조 인자 · 결함 · 준결정
에너지띠 이론 결정 운동량 · 페르미 - 디랙 분포 · 자유 전자 모형(= 드루드-조머펠트 모형) · 드루드 모형 · 분산 관계 · 원자가띠 · 전도띠 · 띠틈 · 페르미 준위 · 페르미 면 · 꽉묶음 모형 · 밀도범함수 이론 · 도체 · 절연체 · 반도체( 양공 · 도핑)
자성 강자성( 이징 모형) · 반자성 · 상자성 · 반강자성 · 준강자성 · 홀 효과 · 앤더슨 불순물 모형(콘도 효과) · 초전도체(쿠퍼쌍 · 조지프슨 효과 · BCS 이론 · 보스-아인슈타인 응집 · 마이스너 효과)
강상 관계 상전이(모트 전이) · 페르미 액체 이론 · 초유동체 · 준입자( 양공 · 엑시톤 · 포논 · 마그논 · 플라즈몬 · 폴라리톤 · 폴라론 · 솔리톤 · 스커미온) · 선형 응답 이론(쿠보 공식 · 요동-흩어지기 정리) · 평균장 이론 · 그린 함수 · 스펙트럼 함수 · 파인만 다이어그램
위상 물리학 위상부도체( 그래핀) · 기하학적 위상 · 양자 홀 효과 · 마요라나 페르미온(마요라나 영준위 상태)
실험 및 장비 전자 현미경( SEM · TEM · STM · AFM) · XRD · 분광학( NMR · 라만 분광법) · 방사광 가속기 }}}}}}}}}


1. 개요2. 설명
2.1. 1차원 대칭2.2. 2차원 대칭2.3. 3차원 대칭2.4. 4차원 대칭2.5. 일반화

1. 개요

/ point group

점군은 공간에서 어떤 조작에 대해 하나 이상의 고정된 점을 보존하는, 기하학적 대칭의 군(群)을 의미한다. 점군은 모든 차원의 유클리드 공간에서 존재하며, 모든 [math(n)]차원 점군은 직교군 [math({\rm O}(n))]의 부분군이다. 점군은 직교행렬의 집합으로 표현될 수 있다.

기하학, 대수학 등 수학 뿐만 아니라, 화학, 응집물질물리학에서도 물질의 대칭성을 표시할 때 주로 사용된다.

2. 설명

쉽게 설명해, 점군은 임의의 기하학적 대상이 회전이나 반사 등의 조작에 대해, 어떤 대칭을 가지는지에 대한 서술이다.

기하학적 대상에 대해 가능한 조작은 다음과 같다.
차원 조작 기호 설명
0차원 이상 동등 조작(identity) [math(E)] 아무런 조작도 가하지 않는다.[1]
1차원 이상 반사(reflection) [math(\sigma)] 특정한 경계면[2]을 기준으로 대칭시킨다.[3]
반전(inversion) [math(i)] 특정한 점을 기준으로 대칭시킨다. (점대칭)
2차원 이상 회전(rotation) [math(C_n)] 특정한 축을 기준으로 (360/n)º회전시킨다.
3차원 이상 회전반사(Improper rotation) [math(S_n)] 특정한 축을 기준으로 (360/n)º 회전시킨 후, 해당 축에 수직인 평면을 기준으로 대칭시킨다.

2.1. 1차원 대칭

직선 위에 있는 점들에 대한 대칭은 C1과 D1 두 가지밖에 없다.
Scn[Scn] 명칭 Int[Int] Cox[Cox] 대칭 차수
C1 동등군(indentity group) n []+ 1
D1 반사군(reflection group) nm [] 2

2.2. 2차원 대칭

평면 위에 있는 점들에 대한 대칭에는 Cn과 Dn이 존재한다. n은 자연수 또는 무한대가 될 수 있다.
Scn[Scn] 명칭 Int[Int] Cox[Cox] 대칭 차수
Cn 순환군 n [n]+ n
Dn 반사군 nm [n] 2n
단, n은 자연수 또는 무한대.

2.3. 3차원 대칭

여기서부터 이면체 대칭(dihedral symmetry)과 정다면체 대칭(polyhedral symmetry)으로 나뉜다.
분류 Scn[Scn] 명칭 Int[Int] Cox[Cox] 대칭 차수
낮은 차수 대칭[13] C1 동등군 1
Ci 점대칭 2
Cs 면대칭 2
이면체 대칭 C Cn 순환 대칭[14] n [n]+ n
Cnh 각기둥 대칭[A] [n+,2] 2n
Cnv 피라미드 대칭 [n] 2n
S[16] S2n gyro-n-gonal group [2n+,2+] 2n
D Dn 이면체 대칭 [n,2]+ 2n
Dnh 각기둥 대칭[A] [n,2] 4n
Dnd 엇각기둥 대칭 [2n,2+] 4n
정다면체 대칭 T T 카이랄 정사면체 대칭 [math(23)] [3,3]+ 12
Td 정사면체 대칭 [math(\overline{4}3m)] [3,3] 24
Th 황철석면체 대칭[18] [math(m\overline{3})] [3,3+] 24
O O 카이랄 정다면체 대칭 [math(432)] [3,4]+ 24
Oh 정팔면체 대칭 [math(m\overline{3}m)] [3,4]+ 48
I I 카이랄 정이십면체 대칭 [math(532)] [3,5]+ 60
Ih 정이십면체 대칭 [math(\overline{53}m)] [3,5] 120

2.4. 4차원 대칭

4차원 이상의 회전은 복잡한 특징을 가진다. 2차원 또는 3차원 회전의 경우, 회전면[19]이 하나지만, 4차원 이상의 회전의 경우 둘 이상의 회전면을 가질 수 있기 때문이다.

인간이 통상 3차원 공간에 살기 때문에 회전이라는 것을 '회전축을 중심으로 도는 것'으로 생각할 수 있으나, 이것은 3차원에서만 정의되는 것이며, 모든 차원에 적용되는 회전의 정의는 회전면에서 벌어지는 변환으로 이해해야 한다. 단편적으로, 만약 회전축을 중심으로 한 변환이라고 생각할 경우, 4차원 이상에서는 어떤 축에 수직한, 서로 평행하지 않은 평면이 수없이 많으므로 회전이 잘 정의되지 않는다. 따라서 4차원 이상의 회전은 회전축이 아닌 여러 개의 회전면의 개념으로 이해한다.

어떤 하나의 회전면을 기준으로 회전하는 심플 로테이션, 그리고 서로 수직한 두 방향으로 회전하는, 더블 로테이션(double rotation)으로 나뉜다. 더블 로테이션의 대칭은 듀오프리즘으로 대표될 수 있다.

이에 따라 4차원의 군은 크게 네 종류의 콕서터 군과 그 부분군으로 분류된다. 콕서터 군은 대합 대칭군 5종, 4차원 정다포체 대칭군 5종, 정다면체 기둥 대칭군 3종, 그리고 무수히 많은 듀오프리즘 대칭군으로 이루어진다.
4차원 점군
분류 콕서터 군 관련 다면체 Cox[Cox] 위수
4차원
정다포체
대칭
(5종)
A4 정오포체 [3,3,3] 120
D4 반정팔포체 [31,1,1] 192
B4 정십육포체
정팔포체
[4,3,3] 384
F4 정이십사포체 [3,4,3] 1152
H4 정육백포체
정백이십포체
[5,3,3] 14400
자기동형
정다포체
대칭
Aut(A4) \[[3,3,3\]] 240
Aut(F4) \[[3,4,3\]] 2304
정다면체
기둥
대칭 (3종)
A3A1 정사면체 기둥 대칭 [3,3]×[] 48
B3A1 정팔면체 기둥 대칭 [4,3]×[] 96
H3A1 정이십면체 기둥 대칭 [5,3]×[] 240
듀오프리즘
대칭
I2(p)I2(q) 듀오프리즘 대칭 [p]×[q] = [p,2,q] 4pq
대합
점군
(5종)
대칭 없음 []+ 1
반사 대칭 [] 2
2-fold 회전 대칭 [2+] 2
2-fold 더블 로테이션 대칭 [2+, 2+] 2
점대칭 [2+, 2+, 2+] 2

2.5. 일반화

유클리드 점군은 아래의 콕서터 군에 해당하거나, 이들 사이의 연산을 이용해 만들 수 있다.
고전군 (Classical Groups)
콕서터 군 관련 대칭 Cox[Cox] 대칭 차수
A A2 정삼각형 [3] 6
A3 정사면체 [3,3] 24
A4 정오포체 [3,3,3] 120
An 단체 [3n-1] [math(\left(n+1\right)!)]
BC BC2 정사각형 [4] 8
BC3 정육면체
정팔면체
[4,3] 48
BC4 정팔포체
정십육포체
[4,3,3] 384
BCn 초입방체
정축체
[4,3n-2] [math(2^nn!)]
D D3=A3 정사면체 [3,3] 24
D4 교대로 색칠된
정십육포체[22]
[31,1,1] 192
D5 5-반초입방체
교대로 색칠된
5-정축체
[32,1,1] 1920
Dn 반초입방체
교대로 색칠된
정축체
[3n-3,1,1] [math(2^{n-1}n!)]
예외적 군 (Exceptional Groups)
콕서터 군 관련 대칭 Cox[Cox] 대칭 차수
I2(p) 정다각형 [p] [math(2p)]
G2 정육각형 [6] 12
H H2 정오각형 [5] 10
H3 정십이면체
정이십면체
[5,3] 120
H4 정백이십포체
정육백포체
[5,3,3] 14400
F4 정이십사포체 [3,4,3] 1152
E E5=D5 5-반초입방체 [31,2,1] 1920
E6 221, 122 [32,2,1] 51840
E7 321, 231, 132 [33,2,1] 2903040
E8 421, 241, 142 [34,2,1] 696729600

다음의 점군은 서로 같다.
  • 평면 대칭 점군: 모든 정다각형의 대칭은 I2(p)로 나타낼 수 있다.
    • A2 = I2(3)
    • BC2 = I2(4)
    • H2 = I2(5)
    • G2 = I2(6)
  • 반초입방체 점군: 반초입방체의 콕서터 표기법([3n-3,1,1])을 바탕으로 계산하면 서로 동일함을 알 수 있다.
    • D3 = A3 ([30,1,1] = [3,3])
    • E5 = D5 ([31,2,1] = [32,1,1])


[1] 아무것도 하지 않은 채 그대로 두나, 수학적 완전성을 위해 필요하다. [2] 1차원일 경우 점, 2차원은 경계선, 3차원은 경계면(평면). 이와 같이 n차원 도형은 n-1차원 공간을 경계로 반사시킨다. [3] 이 조작에 대해 대칭을 갖지 않는 성질을 카이랄성(chirality)이라고 한다. 이는 물리학 화학은 물론, 특히 약학에서 중요하게 다뤄지는 성질이다. 극단적인 예시로, 약물 분자의 카이랄성 때문에 발생한 탈리도마이드 사건이 있다. [Scn] 숀플리스(Schönflies) 표기법 [Int] 헤르만-모갱(Herrman-Mauguin) 표기법, 또는 국제기호 [Cox] 콕서터(Coxeter) 표기법 [Scn] [Int] [Cox] [Scn] [Int] [Cox] [13] 대칭 요소가 없거나, 하나밖에 없는 점군. [14] cyclic symmetry [A] Cnh와 Dnh는 둘 다 각기둥 대칭이라고 불리나, 서로 다르다. 같은 n이라면 적도에 수직한 면대칭이 있는 Dnh가 더 대칭성이 2배 크다. [16] 독일어로 거울을 뜻하는 Spiegel(슈피겔)에서 따왔다. [A] [18] pyritohedral symmetry. 광물 황철석에서 이름을 따왔다. [19] 회전축에 수직한 평면 [Cox] [Cox] [22] 셀이 서로 구분되지 않는 정십육포체의 절반의 대칭성을 가졌다. [Cox]