고체물리학·
응집물질물리학 |
||
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px; min-height:2em; word-break:keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#056666>기반 | 전자기학 · 양자역학( 양자장론 · 이차양자화) · 통계역학 · 미분방정식 · 위상수학( 매듭이론) |
결정학 | 고체 · 결정 · 결정 격자( 브라베 격자) · 군론( 점군 · 공간군) · 역격자( 브릴루앙 영역) · 구조 인자 · 결함 · 준결정 | |
에너지띠 이론 | 결정 운동량 · 페르미 - 디랙 분포 · 자유 전자 모형(= 드루드-조머펠트 모형) · 분산 관계 · 원자가띠 · 전도띠 · 띠틈 · 페르미 준위 · 페르미 면 · 꽉묶음 모형 · 밀도범함수 이론 · 도체 · 절연체 · 반도체( 양공 · 도핑) | |
자성 | 강자성( 이징 모형) · 반자성 · 상자성 · 반강자성 · 준강자성 · 홀 효과 · 드루드 모형 · 앤더슨 불순물 모형( 콘도 효과) · 초전도체( 쿠퍼쌍 · 조지프슨 효과 · BCS 이론 · 보스-아인슈타인 응집 · 마이스너 효과) | |
강상 관계 | 상전이( 모트 전이) · 페르미 액체 이론 · 초유동체 · 준입자( 양공 · 엑시톤 · 포논 · 마그논 · 플라즈몬 · 폴라리톤 · 폴라론 · 솔리톤 · 스커미온) · 선형 응답 이론( 쿠보 공식 · 요동-흩어지기 정리) · 평균장 이론 · 그린 함수 · 스펙트럼 함수 · 파인만 다이어그램 | |
위상 물리학 | 위상부도체( 그래핀) · 기하학적 위상 · 양자 홀 효과 · 마요라나 페르미온( 마요라나 영준위 상태) | |
실험 및 장비 | 전자현미경( SEM · TEM · STM · AFM) · XRD · 분광학( NMR · 라만 분광법) · 방사광 가속기 | }}}}}}}}} |
1. 개요
點 群, point group점군은 공간에서 어떤 조작에 대해 하나 이상의 고정된 점을 보존하는, 기하학적 대칭의 군(群)을 의미한다. 점군은 모든 차원의 유클리드 공간에서 존재하며, 모든 n차원 점군은 직교군 [math(O\left(n\right))]의 부분군이다. 점군은 직교행렬의 집합으로 표현될 수 있다.
기하학, 대수학 등 수학 뿐만 아니라, 화학, 응집물질물리학에서도 물질의 대칭성을 표시할 때 주로 사용된다.
2. 설명
쉽게 설명해, 점군은 임의의 기하학적 대상이 회전이나 반사 등의 조작에 대해, 어떤 대칭을 가지는지에 대한 서술이다.기하학적 대상에 대해 가능한 조작은 다음과 같다.
차원 | 조작 | 기호 | 설명 |
0차원 이상 | 동등 조작(identity) | [math(E)] | 아무런 조작도 가하지 않는다.[1] |
1차원 이상 | 반사(reflection) | [math(\sigma)] | 특정한 경계면[2]을 기준으로 대칭시킨다.[3] |
반전(inversion) | [math(i)] | 특정한 점을 기준으로 대칭시킨다. (점대칭) | |
2차원 이상 | 회전(rotation) | [math(C_n)] | 특정한 축을 기준으로 (360/n)º회전시킨다. |
3차원 이상 | 회전반사(Improper rotation) | [math(S_n)] | 특정한 축을 기준으로 (360/n)º 회전시킨 후, 해당 축에 수직인 평면을 기준으로 대칭시킨다. |
2.1. 1차원 대칭
직선 위에 있는 점들에 대한 대칭은 C1과 D1 두 가지밖에 없다.Scn[Scn] | 명칭 | Int[Int] | Cox[Cox] | 대칭 차수 |
C1 | 동등군(indentity group) | n | []+ | 1 |
D1 | 반사군(reflection group) | nm | [] | 2 |
2.2. 2차원 대칭
평면 위에 있는 점들에 대한 대칭에는 Cn과 Dn이 존재한다. n은 자연수 또는 무한대가 될 수 있다.Scn[Scn] | 명칭 | Int[Int] | Cox[Cox] | 대칭 차수 |
Cn | 순환군 | n | [n]+ | n |
Dn | 반사군 | nm | [n] | 2n |
2.3. 3차원 대칭
여기서부터 이면체 대칭(dihedral symmetry)과 정다면체 대칭(polyhedral symmetry)으로 나뉜다.분류 | Scn[Scn] | 명칭 | Int[Int] | Cox[Cox] | 대칭 차수 | |
낮은 차수 대칭[13] | C1 | 동등군 | 1 | |||
Ci | 점대칭 | 2 | ||||
Cs | 면대칭 | 2 | ||||
이면체 대칭 | C | Cn | 카이랄 정다면체 대칭 | n | [n]+ | n |
Cnh | 각기둥 대칭[A] | [n+,2] | 2n | |||
Cnv | 피라미드 대칭 | [n] | 2n | |||
S | S2n | gyro-n-gonal group | [2n+,2+] | 2n | ||
D | Dn | 이면체 대칭 | [n,2]+ | 2n | ||
Dnh | 각기둥 대칭[A] | [n,2] | 4n | |||
Dnd | 엇각기둥 대칭 | [2n,2+] | 4n | |||
정다면체 대칭 | T | T | 카이랄 정사면체 대칭 | [math(23)] | [3,3]+ | 12 |
Td | 정사면체 대칭 | [math(\overline{4}3m)] | [3,3] | 24 | ||
Th | 황철석면체 대칭[16] | [math(m\overline{3})] | [3,3+] | 24 | ||
O | O | 카이랄 정다면체 대칭 | [math(432)] | [3,4]+ | 24 | |
Oh | 정팔면체 대칭 | [math(m\overline{3}m)] | [3,4]+ | 48 | ||
I | I | 카이랄 정이십면체 대칭 | [math(532)] | [3,5]+ | 60 | |
Ih | 정이십면체 대칭 | [math(\overline{53}m)] | [3,5] | 120 |
(작성중)
[1]
아무것도 하지 않은 채 그대로 두나, 수학적 완전성을 위해 필요하다.
[2]
1차원일 경우 점, 2차원은 경계선, 3차원은 경계면(평면). 이와 같이 n차원 도형은 n-1차원 공간을 경계로 반사시킨다.
[3]
이 조작에 대해 대칭을 갖지 않는 성질을 카이랄성(Chirality)이라고 한다. 이는
물리학과
화학은 물론, 특히
약학에서 중요하게 다뤄지는 성질이다. 극단적인 예시로, 약물
분자의 카이랄성 때문에 발생한
탈리도마이드 사건이 있다.
[Scn]
숀플리스(Schönflies) 표기법
[Int]
헤르만–모갱(Herrman–Mauguin) 표기법, 또는 국제기호
[Cox]
콕서터(Coxeter) 표기법
[Scn]
[Int]
[Cox]
[Scn]
[Int]
[Cox]
[13]
대칭 요소가 없거나, 하나밖에 없는 점군.
[A]
Cnh와 Dnh는 둘 다 각기둥 대칭이라고 불리나, 서로 다르다. 같은 n이라면 Dnh가 더 대칭성이 크다.
[A]
[16]
pyritohedral symmetry. 광물
황철석에서 이름을 따왔다.