최근 수정 시각 : 2021-12-24 14:01:14

부분적분

파일:하위 문서 아이콘.svg   하위 문서: 부분적분/LIATE 법칙
, 부분적분/예제
,
,
,
,
#!wiki style="display: inline; display: none;"
, }}}
해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
{{{#!wiki style="letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례 ) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수 · 다변수 ( 동차 · 숨은 함수( 다가 함수 )) · 그래프 · 대칭 · 증감표 · 극값 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 좌표계 · 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙
극한 부정형 · 어림( 유효숫자 ) · 근방 · 수열의 극한 · 엡실론-델타 논법 · 수렴 ( 균등수렴 ) · 발산 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
· 급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람 ) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해 ) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미분 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 도함수 ( 편도함수 ) · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점 ) · 미분형식 · 미분방정식 ( 풀이 ) · [math(boldsymbolnabla)] · 라그랑주 승수법
정리 · 토픽 평균값 정리 ( 롤의 정리 ) · 스토크스 정리 ( 발산 정리 ) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 ) · 아다마르 변환
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제 ) · 치환적분 · 정적분 ( 예제 ) · 이상적분 · 중적분 ( 선적분 · 면적분 ) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 · 2학년의 꿈 · 리시 방법 · 야코비안
실해석 측도론 ( 측도 · 르베그 측도 ) · 유계( 콤팩트성 ) · 칸토어 집합 · 비탈리 집합
정리 · 토픽
복소해석 복소평면 · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 드 무아브르 공식 ) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 수치해석학 ( FEM ) · 미분기하학 · 해석기하학 · 해석적 정수론 ( 소수 정리 ) · 확률론 ( 중심극한정리 )
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 리만 가설미해결 · 카오스 이론미해결 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학 }}}}}}}}}}}}

1. 개요2. 유도3. 우선 순위: LIATE 법칙4. 도표적분법5. 스틸체스 적분6. 예제7. 고등학교 교과과정에서8. 여담9. 관련 문서

1. 개요

부분적분(, integration by parts)이란, 두 함수의 곱으로 정의된 함수를 적분하는 기법이다.

미분가능한 연속 함수 [math(f(x))], [math(g(x))]에 대해서 다음과 같이 부정적분, 정적분할 수 있다. 이때 [math(f(x))], [math(g(x))]의 도함수도 각각 연속이어야 한다. 곱의 미분법에서 도출된 공식이다.
[math(\displaystyle \begin{aligned} \int f(x)g'(x)\,\mathrm{d}x&=f(x)g(x)-\int f'(x)g(x)\,\mathrm{d}x \\ \int_{a}^{b} f(x)g'(x)\,\mathrm{d}x&=\biggl[ f(x)g(x) \biggr]_{a}^{b}-\int_{a}^{b} f'(x)g(x)\,\mathrm{d}x \end{aligned} )]

2. 유도

곱의 미분법에 따라
[math(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x) ]=f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}+\frac{\mathrm{d} f(x)}{\mathrm{d}x}g(x) )]
양변을 적분하면,
[math(\displaystyle \int \frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x) ]\,\mathrm{d}x=\int f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x+\int \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x)\,\mathrm{d}x )]
그런데, 좌변은
[math(\displaystyle \int \frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x) ]\,\mathrm{d}x=\int \mathrm{d}[f(x)g(x) ]=f(x)g(x) )]
이므로 결국,
[math(\displaystyle f(x)g(x)=\int f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x+\int \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x)\,\mathrm{d}x )]
이상에서 이항을 하면, 부분적분 공식이 유도된다. 여기서 [math(\mathrm{d}f(x)/\mathrm{d}x \equiv f'(x))], [math(\mathrm{d}g(x)/\mathrm{d}x \equiv g'(x))]로 썼다.
[math(\displaystyle \int f(x)g'(x)\,\mathrm{d}x=f(x)g(x)-\int f'(x)g(x)\,\mathrm{d}x )]

3. 우선 순위: LIATE 법칙

파일:상세 내용 아이콘.svg   자세한 내용은 부분적분/LIATE 법칙 문서
번 문단을
부분을
참고하십시오.

4. 도표적분법

부분적분을 빠르게 계산하는 방법이다.

파일:상세 내용 아이콘.svg   자세한 내용은 세로셈법 문서
번 문단을
도표적분법 부분을
참고하십시오.

5. 스틸체스 적분

[math(\displaystyle \begin{aligned} \int f(x)\,\mathrm{d}g(x) &= f(x)g(x) - \int g(x)\,\mathrm{d}f(x) \\ \int_{a}^{b} f(x)\, \mathrm{d} g(x) &= \biggl[ f(x)g(x)\biggr]_a^b-\int_{a}^{b} g(x) \, \mathrm{d} f(x) \end{aligned} )]

미분계수가 함수인 꼴의 부분적분도 가능하다. 이 경우 미분을 하지 않는다는 차이점이 있다.[1]

위 식에서 [math(f(x) = u)], [math(g(x) = v)]를 이용해 간략하게 나타낼 수 있다. 주로 영미권 원서에서 이런 표기를 사용한다.
[math(\displaystyle \begin{aligned} \int u\,\mathrm{d}v&=uv-\int v\,\mathrm{d}u \end{aligned} )]

6. 예제

파일:하위 문서 아이콘.svg   하위 문서: 부분적분/예제
,
,
,
,
,
#!wiki style="display: inline; display: none;"
, }}}

7. 고등학교 교과과정에서

구 교육과정(2009 개정 교육과정)에선 미적분Ⅱ, 현 교육과정(2015 개정 교육과정)에선 미적분에서 자연계열 학생만 배우는 방법이다. 교과서나 EBS교재[2] 등을 보면 항목 맨 위의 방법으로만 하라고 나와있어 [math( x \ln x )]나 [math( a x \cos x )]꼴의 함수 등을 계산하기 상당히 까다롭다. 세로셈식은 엄연한 정규 방법인데도 로피탈의 정리가 마검이면 이건 가히 엑스칼리버라 할 수 있을 만큼 쉬워진다. 그렇다고 저 정의식을 모르면 안되는 것이, 평가원이 가끔 정의식으로 해야 풀리는 문제를 출제한다.[3] 또한 적분파트의 최종보스로 이게 부분적분 써야 하나 치환적분 써야 하나 헷갈리는 문제도 많다. 공식을 유도하고 기출문제를 풀어 감을 익히는 것이 중요하다. 부분적분은 이과 수학 중 가장 계산이 더럽고 복잡한 연산법이라고 흔히들 이야기하기도 한다.

8. 여담

다항함수 정적분을 편리하게 계산하는 다음의 공식 역시 부분적분을 통하여 유도된다. 자세한 내용은 다항함수/공식 참고.
[math(\begin{aligned}\left|\int_{\alpha}^{\beta}a(x-\alpha)^m(x-\beta)^n\;{\rm d}x\right|&=\displaystyle\int_{\alpha}^{\beta}|a|(x-\alpha)^m(\beta-x)^n\;{\rm d}x\\&=\dfrac{|a|(m!n!)}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\end{aligned})]

9. 관련 문서


[1] 다만 미분계수 쪽의 함수가 미분가능하다면 미분한 상태로 적분식에 곱해주어 일반 적분으로 바꿀 수 있다. [2] 수능특강, 수능완성 [3] 2017학년도 대학수학능력시험 9월 모의평가 수학 가형 21번 등.