,
부분적분/예제
#!wiki style="display: inline; display: none;"
, }}}
1. 개요
부분적분( 部 分 積 分, integration by parts)이란, 두 함수의 곱으로 정의된 함수를 적분하는 기법이다.미분가능한 연속 함수 [math(f(x))], [math(g(x))]에 대해서 다음과 같이 부정적분, 정적분할 수 있다. 이때 [math(f(x))], [math(g(x))]의 도함수도 각각 연속이어야 한다. 곱의 미분법에서 도출된 공식이다.
[math(\displaystyle \begin{aligned} \int f(x)g'(x)\,\mathrm{d}x&=f(x)g(x)-\int f'(x)g(x)\,\mathrm{d}x \\ \int_{a}^{b} f(x)g'(x)\,\mathrm{d}x&=\biggl[ f(x)g(x) \biggr]_{a}^{b}-\int_{a}^{b} f'(x)g(x)\,\mathrm{d}x \end{aligned} )] |
2. 유도
곱의 미분법에 따라 다음이 성립한다.[math(\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x) ]=f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}+\frac{\mathrm{d} f(x)}{\mathrm{d}x}g(x) )] |
[math(\displaystyle \int \frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x) ]\,\mathrm{d}x=\int f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x+\int \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x)\,\mathrm{d}x )] |
[math(\displaystyle \int \frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x) ]\,\mathrm{d}x=\int \mathrm{d}[f(x)g(x) ]=f(x)g(x) )] |
[math(\displaystyle f(x)g(x)=\int f(x)\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x+\int \frac{\mathrm{d}f(x)}{\mathrm{d}x}g(x)\,\mathrm{d}x )] |
[math(\displaystyle \int f(x)g'(x)\,\mathrm{d}x=f(x)g(x)-\int f'(x)g(x)\,\mathrm{d}x )] |
3. 우선 순위: LIATE 법칙
4. 도표적분법
부분적분을 빠르게 계산하는 방법이다.의
도표적분법
부분을
참고하십시오.5. 스틸체스 적분 꼴
[math(\displaystyle \begin{aligned} \int f(x)\,\mathrm{d}g(x) &= f(x)g(x) - \int g(x)\,\mathrm{d}f(x) \\ \int_{a}^{b} f(x)\, \mathrm{d} g(x) &= \biggl[ f(x)g(x)\biggr]_a^b-\int_{a}^{b} g(x) \, \mathrm{d} f(x) \end{aligned} )] |
미분계수가 함수인 꼴의 부분적분도 가능하다. 이 경우 미분을 하지 않는다는 차이점이 있다.[1]
위 식에서 [math(f(x) = u)], [math(g(x) = v)]를 이용해 간략하게 나타낼 수 있다. 주로 영미권 원서에서 이런 표기를 사용한다.
[math(\displaystyle \begin{aligned} \int u\,\mathrm{d}v&=uv-\int v\,\mathrm{d}u \end{aligned} )] |
6. 예제
#!wiki style="display: inline; display: none;"
, }}}
7. 고등학교 교과과정에서
구 교육과정(2009 개정 교육과정)에선 미적분Ⅱ, 현 교육과정(2015 개정 교육과정)에선 미적분에서 자연계열 학생만 배우는 방법이다. 교과서나 EBS교재[2] 등을 보면 항목 맨 위의 방법으로만 하라고 나와있어 [math( x \ln x )]나 [math( a x \cos x )]꼴의 함수 등을 계산하기 상당히 까다롭다. 세로셈식은 엄연한 정규 방법인데도 로피탈의 정리가 마검이면 이건 가히 엑스칼리버라 할 수 있을 만큼 쉬워진다. 그렇다고 저 정의식을 모르면 안되는 것이, 평가원이 가끔 정의식으로 해야 풀리는 문제를 출제한다.[3] 또한 적분파트의 최종보스로 이게 부분적분 써야 하나 치환적분 써야 하나 헷갈리는 문제도 많다. 공식을 유도하고 기출문제를 풀어 감을 익히는 것이 중요하다. 부분적분은 이과 수학 중 가장 계산이 더럽고 복잡한 연산법이라고 흔히들 이야기하기도 한다.8. 여담
다항함수의 정적분을 편리하게 계산하는 다음의 공식 역시 부분적분을 통하여 유도된다. 자세한 내용은 다항함수/공식 참고.[math(\begin{aligned}\left|\int_{\alpha}^{\beta}a(x-\alpha)^m(x-\beta)^n\;{\rm d}x\right|&=\displaystyle\int_{\alpha}^{\beta}|a|(x-\alpha)^m(\beta-x)^n\;{\rm d}x\\&=\dfrac{|a|(m!n!)}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\end{aligned})] |