- 수학 자체의 철학이나 역사에 대해서는 수리철학, 과학사 관련 정보, 수학/역사를 참조하세요.
- 수학자의 목록은 수학자 문서를 참조하세요.
- 수학 관련 문서의 작성이나 보강이 필요한 문서들에 대해서는 나무위키 수학 프로젝트를 참조하세요.
1. 산술
수와
연산 Numbers and Operations |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#765432> 수 체계 | 자연수 ( 홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수 ( 정수가 아닌 유리수) · 실수 ( 무리수 · 초월수) · 복소수 ( 허수) · 사원수 | |
표현 | 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 수식 · 기수법 · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수 { 유한소수 · 무한소수 ( 순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수 | ||
연산 | 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈) · 역수 · 절댓값 · 제곱근 ( 이중근호) · 거듭제곱 · 로그 ( 상용로그 · 자연로그) · 검산 · 연산자 · 교환자 | ||
방식 | 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자 | ||
용어 | 이항연산 · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙 | ||
기타 | 수에 관련된 사항 ( 0과 1 사이의 수 · 음수) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기 · 0의 0제곱 · 바퀴 이론 | }}}}}}}}} |
- 수에 관련된 사항
- 숫자: 큰 수/ 작은 수, 미지수/ 상수, 소수/ 합성수, 초월수, 환원 불능, 0과 1 사이의 수
- 연산자: 사칙연산, 분수, 절댓값, 등호/ 부등호, 제곱근, 지수/ 로그, 계승, 테트레이션
- 진법: 2진법, 8진법, 10진법, 12진법, 16진법, 60진법
- 퍼센트 포인트
- 0으로 나누기
- 48÷2(9+3)
- 0의 0제곱
- 유효숫자
2. 수리논리학
수학기초론 Foundations of Mathematics |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
다루는 대상과 주요 토픽 | ||
수리논리학 | 논리 · 논증{ 귀납논증 · 연역논증 · 귀추 · 유추} · 공리 및 공준 · 증명{ 자동정리증명 · 귀류법 · 수학적 귀납법 · 반증 · 더블 카운팅 · PWW} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문( 조각적 정의) · 명제 논리( 명제 · 아이버슨 괄호 · 역 · 이 · 대우) · 양상논리 · 술어 논리( 존재성과 유일성) · 형식문법 · 유형 이론 · 모형 이론 | ||
집합론 | 집합( 원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계( 동치관계 · 순서 관계) · 순서쌍( 튜플) · 서수( 하세 다이어그램 · 큰 가산서수) · 수 체계 · ZFC( 선택공리) · 기수( 초한기수) · 절대적 무한 | ||
범주론 | 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 | ||
계산가능성 이론 | 계산 · 오토마타 · 튜링 기계 · 바쁜 비버 · 정지 문제 · 재귀함수 | ||
정리 | |||
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 집합-부분합 정리 · 퍼스의 항진명제 · 굿스타인 정리 · 불완전성 정리 · 힐베르트의 호텔 · 연속체 가설 · 퍼지 논리 | |||
기타 | |||
예비사항( 약어 및 기호) · 추상화 · 벤 다이어그램 · 수학철학 | |||
틀:논리학 · 틀:이산수학 · 틀:이론 컴퓨터 과학 · 철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 | }}}}}}}}} |
- 논리학 관련 정보
- 집합론
- 증명: 귀류법, 존재성과 유일성
- 논증: 귀납법/ 연역법
- 명제: 역, 이, 대우
- 삼단논법, 변증법
- 논리적 오류: 순환논법, 이율배반
- 패러독스: 러셀의 역설
- 자비의 원칙
- 불완전성 정리
- P-NP 문제
- 기호 논리학
- 논리 연산 - 논리함수
- 카오스 이론
3. 대수학
- 수 체계: 자연수, 정수, 유리수, 무리수, 실수, 허수, 복소수, 사원수
- 대수학의 기본정리
- 다항식: 방정식/ 항등식, 부등식/ 절대부등식, 곱셈 공식/ 인수분해
- 부등식: 산술·기하 평균 부등식, 평균부등식, 코시-슈바르츠 부등식, 재배열 부등식
- 군(대수학), 환(대수학), 체(대수학)
3.1. 선형대수학
선형대수학 Linear Algebra |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#006ab8> 기본 대상 | 일차함수 · 벡터 · 행렬 · 선형 변환 | |
대수적 구조 | 가군(모듈) · 벡터 공간 · 내적 공간 | ||
선형 연산자 | <colbgcolor=#006ab8> 기본 개념 | 연립방정식 · 행렬곱 · 단위행렬 · 역행렬과 크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식( 라플라스 전개) · 주대각합 | |
선형 시스템 | 기본행연산과 기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법 | ||
주요 정리 | 선형대수학의 기본정리 · 차원 정리 · 가역행렬의 기본정리 · 스펙트럼 정리 | ||
기타 | 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환 | ||
벡터공간의 분해 | 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화( 대각행렬) · 삼각화 · 조르당 분해 | ||
벡터의 연산 | 내적 · 외적( 신발끈 공식) · 다중선형형식 · [math(boldsymbolnabla)] · 크로네커 델타 | ||
내적공간 | 그람-슈미트 과정 · 수반 연산자( 에르미트 내적) | ||
다중선형대수 | 텐서 · 텐서곱 · 레비치비타 기호 | }}}}}}}}} |
3.2. 정수론
정수론 Number Theory |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
공리 | ||
페아노 공리계 · 정렬 원리 · 수학적 귀납법 · 아르키메데스 성질 | |||
산술 | |||
나눗셈 | 약수· 배수 | 배수 · 약수( 소인수) · 소인수분해( 목록) · 공배수 · 공약수 · 최소공배수 · 최대공약수 | |
약수들의 합에 따른 수의 분류 | 완전수 · 부족수 · 과잉수 · 친화수 · 사교수 · 혼약수 · 반완전수 · 불가촉 수 · 괴짜수 | ||
정리 | 베주 항등식 · 산술의 기본정리 · 나눗셈 정리 | ||
기타 | 유클리드 호제법 · 서로소 | ||
디오판토스 방정식 | 페르마의 마지막 정리 · 피타고라스 세 쌍 · 버츠와 스위너톤-다이어 추측(미해결) | ||
모듈러 연산 | |||
잉여역수 · 2차 잉여 · 기약잉여계 · 완전잉여계 · 중국인의 나머지 정리 · 합동식 · 페르마의 소정리 · 오일러 정리 · 윌슨의 정리 | |||
소수론 | |||
수의 분류 | 소수 · 합성수 · 메르센 소수 · 쌍둥이 소수( 사촌 소수 · 섹시 소수) · 페르마 소수 · 레퓨닛 수 | ||
분야 | 대수적 정수론 · 해석적 정수론 | ||
산술함수 | 뫼비우스 함수 · 소수 계량 함수 · 소인수 계량 함수 · 약수 함수 · 오일러 파이 함수 · 폰 망골트 함수 · 체비쇼프 함수 · 소수생성다항식 | ||
정리 | 그린 타오 정리 · 페르마의 두 제곱수 정리 · 디리클레 정리 · 소피 제르맹의 정리 · 리만 가설(미해결) · 골드바흐 추측(미해결)( 천의 정리) · 폴리냑 추측(미해결) · 소수 정리 | ||
기타 | 에라토스테네스의 체 · 윌런스의 공식 |
- 대수적 정수론/ 해석적 정수론
- 정수: 배수/ 약수, 나눗셈 정리
- 소수
- 에라토스테네스의 체
- 소인수분해
- 메르센 소수
- 골드바흐 추측
-
윌런스의 공식사실상 1부터 n까지 모든 수를 소수인지 따져보는 것과 같다. - 디오판토스 방정식
- 합동식: 페르마의 소정리, 오일러의 정리, 중국인의 나머지 정리, 윌슨의 정리, 2차 잉여
- 모듈러성 정리
- 페르마의 대정리
- RSA
4. 기하학
기하학·
위상수학 Geometry· Topology |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
평면기하학에 대한 내용은 틀:평면기하학 참고. | ||
기본 대상 | |||
공리 | 유클리드 기하학 · 비유클리드 기하학 | ||
도형 | 기본 도형 | 평면 · 부피 · 꼬인 위치 · 각기둥 · 각뿔 · 원기둥 · 원뿔 · 구 ( 공 모양) · 전개도 · 겨냥도 · 다면체 ( 정다면체) · 정사영 | |
곡면 | 타원면 · 타원포물면 · 쌍곡포물면 · 원환면 | ||
프랙털 도형 | 시에르핀스키 삼각형 · 시에르핀스키 사각형( 멩거 스펀지) · 망델브로 집합 · 코흐 곡선 · 드래곤 커브 | ||
기타 | 다포체 · 초구 · 일각형 · 이각형 | ||
다루는 대상과 주요 토픽 | |||
위상수학 | 위상 공간 | 유계 · 옹골 집합 · 다양체 · 택시 거리 공간 · 연결 공간 · 위상수학자의 사인곡선 | |
위상도형 | 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭( 목록) | ||
대수적 위상수학 | 호몰로지 · 호모토피 | ||
미분기하학 | 미분다양체 · 측지선 · 곡률( 스칼라 곡률 · 리만-크리스토펠 곡률 텐서 · 리치 텐서) · 열률 · 텐서 · 쌍곡 공간( 쌍곡삼각형 · 푸앵카레 원반) · 타원 공간( 구면삼각형) · 아핀접속 | ||
기타 | 차원 · 좌표계 · 거리함수 | ||
정리·추측 | |||
실베스터-갈라이 정리 · 해안선 역설 · 바나흐-타르스키 역설 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 호지 추측미해결 | |||
분야 | |||
논증기하학 · 미분기하학 · 해석기하학 · 매듭이론 · 프랙털 이론 · 정보기하학 · 위상 데이터분석 | }}}}}}}}} |
평면기하학 Plane Geometry |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#765432> 공통 | 도형 · 직선 ( 반직선 · 선분 · 평행) · 각 ( 맞꼭지각 · 동위각 · 엇각 · 삼각비) · 길이 · 넓이 · 다각형 ( 정다각형 · 대각선) · 작도 · 합동 · 닮음 · 등적변형 · 삼각함수 ( 덧셈정리) · 접선 · 벡터 | |
삼각형 | 종류 | 정삼각형 · 이등변삼각형 · 부등변삼각형 · 예각삼각형 · 직각삼각형 · 둔각삼각형 | |
성질 | 오심 ( 관련 정리 · 구점원) · 피타고라스 정리 · 사인 법칙 · 코사인 법칙 · 헤론의 공식 · 신발끈 공식 · 스튜어트 정리 · 우산 정리 · 오일러 삼각형 정리 · 데자르그 정리 · 메넬라오스 정리 · 나폴레옹의 정리 · 체바 정리 · 사영 정리 | ||
기타 | 세모 모양 · 평범한 삼각형 · 젤곤 삼각형 | ||
사각형 | 정사각형 · 직사각형 · 마름모 · 평행사변형 · 사다리꼴 · 등변 사다리꼴 · 연꼴 · 네모 모양 | ||
오각형 · 육각형 · 칠각형 · 팔각형 ( 정팔각형) · 구각형 · 십각형 · 십일각형 · 십이각형 | |||
원 | 단위원 · 원주율 · 호 · 부채꼴 · 할선 · 활꼴 · 방정식 · 원주각 · 방멱 정리 · 톨레미 정리 | ||
원뿔곡선 | 포물선 · 타원 · 쌍곡선 · 파스칼 정리 | ||
기타 | 유클리드 · 보조선 · 테셀레이션( 펜로즈 타일) · 제곱근의 앵무조개 · 픽의 정리 · 논증 기하학 · 해석 기하학 · 3대 작도 불능 문제 | }}}}}}}}} |
- 차원: 2차원, 3차원, 4차원, 5차원
- 점 (0차원)
- 선 (1차원): 선분, 직선/ 반직선, 곡선, 원뿔곡선
- 평면도형 (2차원): 다각형, 원(도형)
- 입체도형(3차원): 구, 원기둥, 원뿔, 다면체, 뫼비우스의 띠
- 초입체도형(4차원 이상): 크로스캡, 클라인의 병
- 합동/ 닮음
- 각
- 작도: 3대 작도 불능 문제
- 도량형: SI 단위, 야드파운드법, 미국 단위계
- 프랙털 이론
- 미분 기하학
4.1. 위상수학
기하학·
위상수학 Geometry· Topology |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
평면기하학에 대한 내용은 틀:평면기하학 참고. | ||
기본 대상 | |||
공리 | 유클리드 기하학 · 비유클리드 기하학 | ||
도형 | 기본 도형 | 평면 · 부피 · 꼬인 위치 · 각기둥 · 각뿔 · 원기둥 · 원뿔 · 구 ( 공 모양) · 전개도 · 겨냥도 · 다면체 ( 정다면체) · 정사영 | |
곡면 | 타원면 · 타원포물면 · 쌍곡포물면 · 원환면 | ||
프랙털 도형 | 시에르핀스키 삼각형 · 시에르핀스키 사각형( 멩거 스펀지) · 망델브로 집합 · 코흐 곡선 · 드래곤 커브 | ||
기타 | 다포체 · 초구 · 일각형 · 이각형 | ||
다루는 대상과 주요 토픽 | |||
위상수학 | 위상 공간 | 유계 · 옹골 집합 · 다양체 · 택시 거리 공간 · 연결 공간 · 위상수학자의 사인곡선 | |
위상도형 | 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭( 목록) | ||
대수적 위상수학 | 호몰로지 · 호모토피 | ||
미분기하학 | 미분다양체 · 측지선 · 곡률( 스칼라 곡률 · 리만-크리스토펠 곡률 텐서 · 리치 텐서) · 열률 · 텐서 · 쌍곡 공간( 쌍곡삼각형 · 푸앵카레 원반) · 타원 공간( 구면삼각형) · 아핀접속 | ||
기타 | 차원 · 좌표계 · 거리함수 | ||
정리·추측 | |||
실베스터-갈라이 정리 · 해안선 역설 · 바나흐-타르스키 역설 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 호지 추측미해결 | |||
분야 | |||
논증기하학 · 미분기하학 · 해석기하학 · 매듭이론 · 프랙털 이론 · 정보기하학 · 위상 데이터분석 | }}}}}}}}} |
5. 해석학
- 함수: 연속함수, 상관관계와 인과관계, 초월함수, 초등함수, 디랙 델타 함수, 이항 관계, 지수함수, 로그함수
- 다항함수 : 일차함수, 이차함수, 삼차함수, 사차함수
- 삼각함수 : 사인 법칙/ 코사인 법칙, 삼각함수의 덧셈정리/ 삼각함수의 합차공식
- 연속함수: 최대·최소의 정리, 중간값의 정리
- 초월함수/특수함수: 로그함수, 쌍곡선 함수, 베타 함수, 감마 함수, 제타 함수, 르장드르 함수, 베셀 함수, 오차함수, 타원 적분, 지수 적분 함수, 로그 적분 함수, 삼각 적분 함수, 쌍곡선 적분 함수, 람베르트 W 함수, 폴리로그함수, 프레넬 적분 함수, 에어리 함수
- 그래프
- 좌표계
- 극한: 0. [ruby(9, ruby=・)][3] = 1, 발산
- 함수의 극한
- 무한수열의 극한
- 엡실론-델타 논법
- 미적분: 미분/ 적분
- 벡터 미적분학 : 델(연산자), 발산 정리, 선적분, 곡선, 스토크스 정리
- 푸리에 해석
- 라플라스 변환, 푸리에 변환
- 수열/ 급수(수학): 테일러 급수
- 오일러의 공식, 오일러의 등식
- 아르키메데스 성질
- 수치해석
- 유한요소해석
- 전산유체역학
- 공업수학
5.1. 통계학
통계학 Statistics |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#4d4d4d> 수리통계학 | 기반 | 실해석학( 측도론) · 선형대수학 · 이산수학 |
확률론 | 사건 · 가능성 · 확률변수 · 확률분포( 표본분포 · 정규분포 · 이항분포 · 푸아송 분포 · 카이제곱분포 · [math(t)]분포 · [math(z)]분포 · [math(F)]분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙( 무한 원숭이 정리 · 던파확률의 법칙) · 중심극한정리 · 벤포드의 법칙 | ||
통계량 | 평균( 산술평균 · 기하평균 · 조화평균 · 멱평균 · 대수평균) · 기댓값 · 편차( 절대편차 · 표준편차) · 분산( 공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도 | ||
추론통계학 | 가설 · 변인 · 추정량 · 점추정 · 신뢰구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 · 그레인저 인과관계 · 신뢰도와 타당도 | ||
통계적 방법 | 회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석( 요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습( 군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타분석 · 모델링( 구조방정식) | ||
기술통계학· 자료 시각화 | 도표( 그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점 | }}}}}}}}} |
※ 통계 관련 정보도 참고할것. |
6. 이산수학
이산수학 Discrete Mathematics |
||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
이론 | |
기본 대상 | 수학기초론( 수리논리학 · 집합론) · 수열 · 조합 · 알고리즘 · 확률 | |
다루는 대상과 주요 토픽 | ||
수열 | 등차수열( 뛰어 세기) · 등비수열 · 계차수열 · 조화수열 · 귀납적 정의( 점화식) · 급수 · 규칙과 대응 · 규칙 찾기 · 피보나치 수열 · 읽고 말하기 수열 · 생성함수 | |
조합 | 경우의 수( 공식) · 순열( 완전순열 · 염주순열) · 치환 · 분할( 분할수) · 최단거리 · 제1종 스털링 수 · 제2종 스털링 수 · 카탈랑 수 · 벨 수 · 라흐 수 · 포함·배제의 원리 · 더블 카운팅 · 조합론 | |
그래프 | 수형도 · 인접행렬 · 마방진 · 마법진 · 한붓그리기( 해밀턴 회로) · 쾨니히스베르크 다리 건너기 문제 | |
확률 | 사건 · 가능성 · 확률변수 · 확률분포( 정규분포 · 이항분포 · 푸아송 분포 · 카이제곱분포 · t분포) · 조건부확률 · 기댓값 · 도박사의 오류 · 몬티 홀 문제 · 뷔퐁의 바늘 | |
기타 | ||
P-NP 문제미해결 · 4색정리 · 이항정리( 파스칼의 삼각형) · 이산 푸리에 변환 · 비둘기 집의 원리 · 상트페테르부르크의 역설 · 투표의 역설 · 에르고딕 가설미해결 · 콜라츠 추측미해결 · 시행착오 ( 예상과 확인) | ||
관련 문서 | ||
논리학 관련 정보 · 수학 관련 정보 · 컴퓨터 관련 정보 · 틀:수학기초론 · 틀:이론 컴퓨터 과학 | }}}}}}}}} |
- 조합론
- 경우의 수 (합의 법칙, 곱의 법칙)
- 순열
- 조합
- 분할수
- 제1종 스털링 수
- 제2종 스털링 수
- 비둘기 집의 원리
- 도박사의 오류
- 4색 정리
- 그래프 이론
- 그래프
- 트리(그래프)
- 쾨니히스베르크 다리 건너기 문제
- 난수
- 산술의 기본정리
- 콜라츠 추측
- 정수론과 대수학의 조합론적 접근: 불 대수 등을 포함.
- 암호
- 비밀번호
- 암호 알고리즘
- 코드
- 회문
- 유한 상태 기계
7. 기타
- 수학에서 쓰이는 약어들
- 힐베르트의 23가지 문제
- 밀레니엄 문제: 호지 추측, 푸앵카레 추측, 리만 가설, 양-밀스 질량 간극 가설, 나비에-스톡스 방정식, 버츠와 스위너톤-다이어 추측, P-NP 문제
- 수학(교과): Precalculus, AP 미적분학, AP 통계학, IBDP/수학
- 문제집: 수학의 정석, 쎈, 개념원리, 수학의 바이블, 일등급수학, 블랙라벨, 수학의 왕도
- 국제 과학 올림피아드: 국제수학올림피아드, 아시아태평양수학올림피아드, 한국수학올림피아드
- STEP(시험)
- 대한청소년수학회
- 아날로그/ 디지털
- 수포자
- 48÷2(9+3)
- 하샤드 수
- 루스-아론 쌍
- 접두어
<colbgcolor=#ddd,#000> SI 접두어 | |||||
배수 | 명칭 | 기호 | <colbgcolor=#ddd,#000> 배수 | 명칭 | 기호 |
[math(10^1)] | 데카 | [math(\rm da)] | [math(10^{-1})] | 데시 | [math(\rm d)] |
[math(10^2)] | 헥토 | [math(\rm h)] | [math(10^{-2})] | 센티 | [math(\rm c)] |
[math(10^3)] | 킬로 | [math(\rm k)] | [math(10^{-3})] | 밀리 | [math(\rm m)] |
[math(10^6)] | 메가 | [math(\rm M)] | [math(10^{-6})] | 마이크로 | [math(\textμ)] |
[math(10^9)] | 기가 | [math(\rm G)] | [math(10^{-9})] | 나노 | [math(\rm n)] |
[math(10^{12})] | 테라 | [math(\rm T)] | [math(10^{-12})] | 피코 | [math(\rm p)] |
[math(10^{15})] | 페타 | [math(\rm P)] | [math(10^{-15})] | 펨토 | [math(\rm f)] |
[math(10^{18})] | 엑사 | [math(\rm E)] | [math(10^{-18})] | 아토 | [math(\rm a)] |
[math(10^{21})] | 제타 | [math(\rm Z)] | [math(10^{-21})] | 젭토 | [math(\rm z)] |
[math(10^{24})] | 요타 | [math(\rm Y)] | [math(10^{-24})] | 욕토 | [math(\rm y)] |
[math(10^{27})] | 론나 | [math(\rm R)] | [math(10^{-27})] | 론토 | [math(\rm r)] |
[math(10^{30})] | 퀘타 | [math(\rm Q)] | [math(10^{-30})] | 퀙토 | [math(\rm q)] |
8. 미분류 문서
관련 전공자이신 분은 문서들을 적절한 위치로 옮겨 주세요.