최근 수정 시각 : 2022-02-26 20:37:32

손실 압축 포맷

1. 개요2. 특징3. 종류
3.1. 동영상 포맷3.2. 오디오 포맷3.3. 정지영상 포맷
4. 기타5. 같이보기

1. 개요

사진, 음악, 동영상 등 주로 멀티미디어 데이터에서 인간이 지각하기 힘든 범위의 데이터를 버리고 압축하는 방법을 사용하는 포맷. 압축을 하는 과정에서 원본 데이터가 손실되기 때문에 무손실 압축 포맷과 비교된다.

2. 특징

손실 압축은 무손실 압축과는 다르게 인간의 인지와 관련이 있다. 때문에 압축이라는 말을 공유하고 있을 뿐이지, 수학적인 정보 이론적 관점의 무손실 압축과는 크게 상관이 없다.[1] 손실 압축은 인간의 감각 기관의 특성 때문에 인지되기 어려운 정보를 제거함으로써 실현된다. 때문에 인간 중심적인 공학적 대안에 해당된다. 또한 손실 압축 자체는 디지털 기법이 아니다[2]. 디지털 정보로 저장되는 손실 압축 포맷일 뿐이다.

흔히 멀티미디어 데이터로 불리는 영상(정지영상, 동영상 모두)과 음향 데이터의 저장에 있어 가장 넓게 활용되는 기법이다. 멀티미디어 데이터의 경우 연속적인 데이터를 이산화( 샘플링)하는 과정에서 화질이나 음질을 높이려면 데이터 크기가 지나치게 커지는 경우가 많다. 이렇게 되면 제한된 네트워크의 대역폭에서 전송하기 어려울 뿐만 아니라, 저장에 필요한 장치의 용량이 커져야 하므로 비용이 증가하게 된다. 따라서 데이터 크기를 줄이는 과정을 강제할 수 밖에 없는데, 손해를 최소화 하기 위하여 인간이 인지하기 어려운 부분을 잘라내고자 하는 것이 손실 압축 포맷의 지향점이다.

예컨대 소리의 경우 일반인이 인지하기 힘든 고주파, 저주파 영역이 삭제되며, 동영상의 경우 인간이 인지하는 색각 정보와 패턴[3]을 토대로 인지하기 힘든 영역을 삭제한다. 이 과정을 거치면서 20%도 안 되는 용량에 인간이 인지하기 힘든 손상만 생기도록 하기에 데이터 보관 및 전송에 있어 경제적으로 아주 효율적이다. 저장 장치나 네트워크[4] 비용을 덜 들이면서 고화질, 고음질 데이터를 보관 및 전송하는게 가능해지기에, 현재도 폭넓게 사용되고 있다.

위에도 적어놓았듯이, 손실 압축은 아날로그 데이터의 압축에 대한 인간 중심의 공학적 대안이므로, 일반적인 디지털 데이터의 경우 적용할 수 없다. 가령 텍스트 문서에 적힌 내용을 손실 압축하기 위해서는 의미를 추려서 압축해야 하나, 그림이나 소리와 달리 글은 사소한 변화로도 인간의 인지적 변화가 크게 나타나기 때문에 적용이 불가능하다. 문서를 그림과 같은 방식으로 손실압축할 경우 아예 의미가 없어진다.
2010년 버전. 2019년 버전.
같은 영상을 여러번 유튜브에 반복해서 올린 결과물. 횟수가 커질수록 미세한 손실이 계속 쌓이고 쌓여 눈에 띄게 증가한다. 이를 학술적으로는 아티팩트(artifact/artefact) 등으로 쓰지만, 일반적으로는 화질/음질이 깨진다라고 표현한다. 최근에는 이를 디지털 풍화라 부르기도 한다.

멀티미디어가 발달하면서 취급하는 데이터의 용량이 무지막지하게 커지게 되는데, 그것을 효율적으로 사용할 수 있도록 원본에서 안 쓰는 부분[5]을 잘라내서 상당한 용량 절감 효과를 보여준다. 20000Hz 이상을 들을 수 있는 사람은 사실상 없다고 봐도 되기 때문이다. 물론 비손실 압축 포맷에 비해서 단점은 있다. 압축률이 높기 때문에 디코딩에 필요한 프로세싱 자원이 비손실 압축 포맷에 비해 좀 더 많이 든다.

3. 종류

3.1. 동영상 포맷

손실 압축은 동영상에서 가장 폭넓게 활용된다. 만약 1080p FHD 60fps 기준으로 음성 없이도 압축을 전혀 하지 않는 경우, 1초에 영상으로만 474MB(전송 기준 약 4Gbps)가 요구된다. 따라서 거의 대부분의 동영상 포맷은 영상 및 음성에 손실 압축을 적용한 포맷을 아주 많이 사용하게 된다. 특이하게 압축 기법을 부호화/복호화의 의미를 가진 코덱(codec)이라 부른다. 이 동영상 코덱들 중에서 근래에 상당히 범용화된 것이 H.264으로 압축 효율성이 뛰어나고 기존의 MPEG 계열 비디오 코덱의 깍두기 현상을 어느정도 해결한 코덱이기 때문. 단, 압축된 영상을 재생하기 위해서는 압축을 풀어나가야 하므로, 처리장치(CPU, 근년엔 GPU도 지원)의 성능이 좋아야 한다. 반대로, CPU 성능의 향상으로 보다 더 효율적인 압축 코덱들이 많이 대중화[6]되었다.

화질보다 속도를 중요시하는(그리고 전송량으로 인한 회선 비용도 더해서) 오디오 스트리밍이나 VOD 같은 서비스는 손실 압축 포맷으로 최대한 용량을 줄이는 것과, 동시에 어느정도 볼만한 화질을 모두 챙겨야 하기에 이 기술이 이 업계의 핵심이다. 2000년대 중반 CD 플레이어 수준의 영상 품질만 해도 서비스하는 곳이 많지 않았던 시대에 유튜브가 초창기 어도비 플래시 플레이어 기반으로 상당히 성능이 좋은 압축 방식을 사용하며 회선 사용량을 엄청나게 줄이고[7], 더해 편의성을 제공하면서 크게 성공할 수 있었으며 현재도 압축 기법 연구를 주요 VOD 관련 업계에서 투자하고 있는 경우가 많다.

동영상 분야나 디지털 지상파 TV 방송(제작, 송출 모두) 분야에서는 이를 비압축 포맷으로 썼다간 비트레이트 수치가 어머어마해지기 때문에 어쩔 수 없이 손실 압축 포맷을 사용한다. 방송국에서 사용되는 TV방송용 원본 베타캠 테이프 조차 비디오부는 손실 압축되어 있다.[8]

비디오 코덱 및 포맷
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
코덱 MPEG
/ H.26x
MPEG-1, MPEG-2 Part 2(H.262), MPEG-4 Part.2( DivX, Xvid), H.261, H.263, H.264, H.265, H.266
기타 WMV, Theora, VP8, VP9, AV1, Apple ProRes, Bink, GoPro CineForm, Motion JPEG
컨테이너(확장자) ASF, AVI, BIK, FLV, MKV, MOV, MP4, MPEG, Ogg, SKM, TS, WebM, WMV
}}}}}}}}} ||
그래픽 | 오디오 | 비디오


용량 대비 화질 효율은 일반적으로 MPEG-2 Theora < WMV 9 Xvid < VP8 < H.264 < VP9 < HEVC < AV1 < VVC 순이다.

동영상의 아티팩트는 주로 화질에서 많이 나타나지만, 압축률을 극단적으로 높인 경우(144p 등) 음질까지(!) 손실된다. 화질의 경우 압축 코덱의 발전이 있기 전에는 주로 깍두기 현상과 같이 동화상에서 관측되는 아티팩트들이 많았지만, 현재는 이러한 문제를 해결한 코덱이 보편화되면서 많이 줄어든 편이다.

3.2. 오디오 포맷

오디오 포맷의 경우 데이터 형태가 영상에 비해서도 단순(1차원 연속 데이터)이고, 인간이 인지하기 어려운 부분을 쉽게 추려낼 수 있어 손실 압축 포맷을 폭넓게 활용하는 분야다. 원본이 되는 음파는 아날로그 시대부터 신호 처리 등의 연구를 통해 제한된 주파수 대역폭만 사용 가능했던 라디오 등 여러 관련 연구가 일찍부터 진행되었다. MP3만 하더라도 1997년 등장했고, 이미 이 시기의 개인용 컴퓨터에서도 지연 없이 재생 가능한 수준까지 도달했다. 반대로, 저장장치의 용량이 커지고 대역폭이 충분해짐에 따라 최근에는 무손실 압축 오디오 포맷의 상용 사용도 일부 늘어나는 추세이며, 음반 등 제작 분야 안에서는 무손실 압축 음원만을 쓰는 경우도 많아졌다.

오디오의 아티팩트는 무손실 WAV 파일을 주로 MP3 128Kbps 이하로 저장하는 등 비트레이트를 확 줄였을 때 많이 나타나게 된다. CD 등 저장 매체의 의존도가 줄고, 라디오 등 대역폭이 제한된 환경을 마주할 기회가 줄어든 현재는 일부 음원 추출 사이트[9]에서 비트레이트가 제한된 파일을 받았을 때 주로 들어볼 수 있다.

오디오 코덱
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
<colbgcolor=#a0e6c3,#286f4f> 손실 압축 <colbgcolor=#cbeddc,#2b4f42> 일반 MP1, MP2, MP3, mp3PRO, AAC, Musepack, WMA, Vorbis, Opus, USAC
음성 특화 AMR-NB, AMR-WB, AMR-WB+, WMA Voice, Speex, Opus, EVS, Codec 2
다중채널 특화 AC-3, SDDS, DTS, AC-4
블루투스 SBC, aptX, AAC, LDAC, Samsung Scalable Codec, LC3
무손실 압축 FLAC, ALAC, APE, TAK, WMA Lossless, TTA, Wavpack
무손실 무압축 PCM( WAV, AIFF)
관련 문서: MIDI, DSD
}}}}}}}}} ||
그래픽 | 오디오 | 비디오

3.3. 정지영상 포맷

흔히 말하는 그림[10]. 동영상과의 차이점은 정지영상은 단일 프레임이라는 점 밖에 없고, 과거에는 해상도가 큰 비압축 그림도 당시 저장장치 용량[11]을 감안하면 지나치게 컸기에 동영상과 비슷하게 JPEG 등 손실 압축을 많이 썼다.

디지털 풍화로 불리는 밈이 이 JPEG의 아티팩트로 인해 생기는 현상이며, 가장 대표격으로 꼽히는 것은 빨간색 정보의 소실이다. 그림판으로 빨간 선을 그은 다음 JPG로 저장하면 빨간색이 탁해지는 현상이 이것으로, 크로마 서브샘플링을 사용해 색차 신호의 해상도가 줄어들면서 생기는 현상이다.

손실 압축 포맷으로는 다음과 같은 것들이 있다.
용량 대비 화질 효율은 JPEG 2000 < JPEG < WebP < HEIF BPG < AVIF 순이다.

한편, 처리 성능 및 저장장치 용량의 발달이 비약적으로 이루어지면서 굳이 JPG같은 손실압축포맷을 쓰지 않고 PNG와 같은 비손실 압축 포맷을 쓰려는 경향이 점차 늘어나고 있었는데, 8K 고화질 고용량 영상/사진이 보급되기 시작하면서 HEIF 이후의 포맷들이 출현하고 있는 중이다. 다만 무손실쪽에서는 FLIF라는 것도 출현하고 있다.

일반적인 정지영상 저장용으로는 사용되지 않지만, 3D 그래픽의 텍스처는 전용 텍스처 압축 포맷을 갖추고 있는데, 이것들도 특성상 모두 손실 압축 방식이다.

그래픽 포맷
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; word-break: keep-all"
<colbgcolor=#f4eaa2,#7c732e> 애니메이션 기능 지원, 다중 레이어 지원L, 알파값 지원α
비트맵 손실 압축 JPEG AVIF, BPG▶α, FLIF▶α, HEIF, WebP▶α RAW, DDS, PSD▶Lα
무손실 압축 APNG▶α, DNG, EXRα, GIF
PCX, PNGα, RGBEα, TIFF
무손실 무압축 BMPα
벡터 AI, CDR, SVG
}}}}}}}}} ||
그래픽 | 오디오 | 비디오

4. 기타

WMA와 MP3는 무손실 포맷 역시 지원한다. WMA Lossless , MP3HD 형태로 존재하며, MP3HD 같은 경우는 일반 기기에 넣으면 320kbps, 지원 기기에 넣으면 원본음질로 재생된다. 넓은 호환성에 비해 문제점이 많아서 사장되었다.

MP3HD 사용기(영어) - 테스트결과 원본 WAV 336MB, 기본설정 FLAC 142MB, mp3HD 175MB 수준이었다고 하며 디코딩속도도 떨어졌다고 한다. 무손실유저 상당수가 들리지도 않는 초고음역대 잘라내는 걸 꺼리는 헤비유저임을 감안할 때, 일반기기와 호환을 위한 용량증가는 차세대 포맷에 용량절감을 원하는 그들의 요구사항하고 안 맞는 셈이다.

The Distortion of Sound라는 다큐멘터리에서는 여러 음악가들이 나와서 손실 압축 포맷은 영 좋지 않다고 까고 있는데, 정작 까기만 하고서는 무손실 포맷에 대한 얘기를 하지 않고, 음원을 압축하면 좋지 않다고 비교 청취를 하는 부분에서 압축된 부분은 MP3 64kbps 급으로 뭉턱 잘라먹은 예제를 들어버리고, 압축되지 않았다고 한 부분도 유튜브에서 재생했으니 이미 MP3 256 kpbs 수준으로 압축되었다는 사실을 시청자들에게 알리지 않는 등 굉장히 기만적인 내용으로 진실을 호도하고 있다. 무엇보다도 음질을 논한다는 음악가들 중에는 스티브 아오키, 린킨 파크, 스눕 독, 그리고 믹싱이 잘못되었기로 악명높은 메탈리카의 Death Magnetic을 믹싱한 Andrew Scheps 등 믹싱 과정에서 음량을 왕창 올리고 음질을 다 깎아먹느라 음질에 대해 얘기할 자격이 없는 인물들이 대거 등장한 탓에 신빙성을 잃어버리고 있다. 다행히도 먼저 녹음부터 제대로 하라고 비판하는 댓글이 종종 보이기는 한다.

5. 같이보기



[1] 물론 손실 압축 포맷에서도, 추가적인 압축률을 위해 무손실 압축을 병행해서 사용하는 경우가 있다. [2] 예를 들면 아날로그 방송 시절 인간의 눈이 밝기에 더 민감하다는 특성을 이용하여 색상(크로마) 신호의 해상도를 줄여 대역폭을 확보하기도 했다. [3] 음질의 주파수 영역대와 비슷한 개념이다. [4] 아날로그 신호 또한 대역폭의 한계가 있다. [5] 그 중 음악 파일의 경우는 사람의 귀에 들리지 않는 비가청 주파수를 말한다. [6] 전술한 H.264만 보더라도 CPU 성능이 충분히 향상된 2000년대 후반부터 본격적으로 쓰이기 시작했다. [7] 물론 구글 인수 전까지는 절대적인 전송량이 너무 많이 필요해서 적자 신세였다고 한다. 네트웍 대역 문제와 스토리지 문제가 돈이 빵빵한 구글 덕분에 해결되었는지 요즘은 8K UHD 같은 고화질 서비스도 한다. 하지만 예전에 올라온 동영상은 고화질 영상이 드물다. 특히 2000년대 영상 대부분이 720p조차 지원하지 않는다. [8] 물론 지상파 디지털 TV 방송 신호도 당연히 손실을 압축할 수 있다. [9] 사이트 자체에는 문제가 없을 수 있으나, 운영비 등을 광고로 충당하고 비용을 아끼고자 음질을 신경 쓸 리가 없다. 당연하지만 유료 음원을 추출하는 행위는 권리 침해 등의 문제가 될 수 있다. [10] 다만 오늘날에는 움짤 등으로 대표되는 무음원의 짧은 동영상이 보편화되어 있어, 그림 포맷이 정지영상 뿐 아니라 WebP처럼 GIF처럼 동영상을 지원하는 경우도 있다. [11] 예를 들어 3.5인치 플로피 디스켓 1.4MB 기준으로 트루컬러 640x480 그림 한 장을 비압축으로 저장하면 끝이다. [손실선택가능] 규격 내에서 손실/무손실 중 택일할 수 있다. [손실선택가능] [손실선택가능] [손실선택가능] [손실선택가능]

분류