최근 수정 시각 : 2024-02-25 19:05:20

극형식

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#26455A>실수와 복소수 실수( 실직선 · 아르키메데스 성질) · 복소수( 복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수 함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수( 동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수( 대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수( 변분법 · 오일러 방정식) · 병리적 함수
극한·연속 함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴( 균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사 · 선형근사( 어림)
수열· 급수 수열 · 급수( 멱급수 · 테일러 급수( 일람) · 조화급수 · 그란디 급수( 라마누잔합) · 망원급수( 부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분 미분 · 도함수( 이계도함수 · 도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점( 변곡점 · 안장점) · 매끄러움
평균값 정리( 롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분 적분 · 정적분( 예제) · 스틸체스 적분 · 부정적분( 부정적분 일람) · 부분적분( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분( 코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수· 벡터 미적분 편도함수 · 미분형식 · · 중적분( 선적분 · 면적분 · 야코비안) · 야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리( 발산 정리 · 그린 정리 변분법
미분방정식 미분방정식( 풀이) · 라플라스 변환
측도론 측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석 코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석 공간 위상 벡터 공간 · 국소 볼록 공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소 수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수 C*-대수 · 폰 노이만 대수
정리 한-바나흐 정리 · 스펙트럼 정리 · 베르 범주 정리
이론 디랙 델타 함수( 분포이론)
조화해석 푸리에 해석( 푸리에 변환 · 아다마르 변환)
관련 분야 해석기하학 · 미분기하학 · 해석적 정수론( 1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론( 확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학( 경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타 퍼지 논리
}}}}}}}}} ||

1. 개요2. 활용
2.1. 복소평면2.2. 함수2.3. 대칭성2.4. 드 무아브르 공식

1. 개요

Polar form
대수학이나 함수론에서 사용하는 표현식이다.

복소 공간에서 복소수를 표현하는 방법으로 복소수의 절댓값 편각의 크기를 사용하여 나타낸다. 예를 들어, 임의의 복소수 [math(Z)]에 대하여 [math(Z=a+bi)]일 때, 편각의 크기를 [math(θ)]라고 한다면 [math(Z)]의 극형식은 [math(Z=|Z|(\cosθ+i\sinθ))]가 된다.[1]

2. 활용

2.1. 복소평면

복소수 평면 위의 과 대응시켜 나타낸 것을 복소평면 또는 가우스평면이라 한다. 앞서 말한 복소수 [math(Z)]에서 [math(Z)]를 나타내는 점을 [math(P(Z))], 또는 점 [math(Z)]라 한다.

2.2. 함수

[math(r=f(θ))] 또는 [math(f(r,θ))]로 새로운 함수를 정의해보자. [math(r=1)]이면 2차원 상의 이 만들어진다. 삼각함수 등 여러 다른 함수를 도입하면 아름다운 미술학과 수학의 조화를 접하게 된다 카더라(...).

2.3. 대칭성

  • 그래프 위에 놓인 [math((r,θ))]에 대하여 [math(θ)]가 [math(-θ)]로 바뀌어도 변하지 않으면 극축에 대하여 대칭이다.
  • 그래프 위에 놓인 [math((r,θ))]에 대하여 [math(r)]이 [math(-r)]로 바뀌거나 [math(θ)]가 [math(θ+π)]로 바뀌어도 같다면 극점에 대하여 대칭이다.
  • 그래프 위에 놓인 [math((r,θ))]에 대하여 [math(θ)]가 [math(π-θ)]로 바뀌어도 같다면 수직선 [math(θ=π/2)]에 대하여 대칭이다.

2.4. 드 무아브르 공식

극형식을 [math(|Z|<θ)]로 나타내기도 한다. 벡터와 비슷하게 [math(|Z|=1)]이고 편각이 [math(θ)]인 복소수를 단위 복소수라 하고, [math(e^{iθ})]라고 쓴다. 이를 확장시키면 오일러의 공식이 나온다.


[1] 여기서 [math(|Z|)]는 [math(Z)]의 크기(magnitude)를 뜻하며, [math(|Z| = \sqrt{Z\overline{Z}} = \sqrt{\Re(Z)^2 + \Im(Z)^2})]이다.

분류