[[대수학|대수학 Algebra ]]
|
||||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" |
이론 | |||
기본 대상 | 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해) · 부등식( 절대부등식) · 방정식( /풀이 · 근( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술) | |||
수 체계 | 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 대수적 무리수 · 초월수) · 초실수) · 복소수( 허수) · 사원수 · 팔원수 · 대수적 수 · 벡터 공간 | |||
다루는 대상과 주요 토픽 | ||||
대수적 구조 | ||||
군(group) | 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리 | |||
환(ring) | 아이디얼 | |||
체(field) | 갈루아 이론 · 분해체 | |||
대수 | 가환대수 · 리 대수 · 불 대수( 크로네커 델타) | |||
마그마· 반군· 모노이드 | 자유 모노이드 · 가환 모노이드 | |||
선형대수학 | 벡터 · 행렬 · 텐서( 텐서곱) · 벡터 공간( 선형사상) · 가군(module) · 내적 공간( 그람-슈미트 과정 · 수반 연산자) | |||
정리·추측 | ||||
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결 | ||||
관련 하위 분야 | ||||
범주론 | 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 토포스 이론 · 타입 이론 | |||
대수 위상수학 | 연속변형성 · 사슬 복합체 · 호몰로지 대수학( 호몰로지 · 코호몰로지) · mapping class group · 닐센-서스턴 분류 · 호프대수 | |||
대수기하학 | 대수다양체 · 층 · 스킴 · 에탈 코호몰로지 · 모티브 | |||
대수적 정수론 | 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리 | |||
가환대수학 | 스펙트럼 정리 | |||
표현론 | 실베스터 행렬 | |||
기타 및 관련 문서 | ||||
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 | }}}}}}}}} |
1. 개요
比 例 式 / proportional expression비의 값이 같은 두 비를 나타낸 식. 따라서 비례식은 등식이며, 비례식에는 0이 나올 수 없다. 비례식에서 안쪽에 있는 두 항을 내항, 바깥쪽에 있는 두 항을 외항이라고 한다. 비례식에서 내항의 곱과 외항의 곱은 같다. 예를 들어, 비례식 [math(2:3=4:6)]에서는 [math(3)], [math(4)]가 내항이고, [math(2)], [math(6)]이 외항이다. [math(3\times 4=2\times 6=12)]이므로 내항의 곱과 외항의 곱은 같다.
초등학교 6학년 수학 교육과정에 나오는 개념이다. 6학년 때는 비례식을 가지고 비례배분을 하게 된다. 중학교 때 방정식의 활용에 비례배분, 백분율, 비례식이 응용된다. 과거에는 고1 때 유리식 단원에서 다룸과 동시에 " 가비의 이"라고 상대적으로 복잡한 형태의 등식으로 나왔으나, 2009 개정 교육과정 때 비례식이 통째로 삭제되었다. 더 심화되면 선형사상(linear map)과 준동형 사상(Homomorphism)으로 귀결된다.
비례식의 내항의 곱과 외항의 곱이 같다는 특징은 아래와 같은 과정으로 유도할 수 있다.
비례식 [math(\displaystyle{a:b=c:d}~~)]
([math(a,~b,~c,~d)]는 [math(0)]이 아님) 비례식 양변의 비를 비율로 바꾸어 나타내면 [math(\displaystyle\frac{a}{b}=\frac{c}{d})] 양변에 [math(bd)]을 곱하면 [math(\displaystyle\frac{abd}{ b}=\frac{cbd}{d})] [math(\displaystyle\frac{a\cancel bd}{\cancel b}=\frac{cb\cancel d}{\cancel d})] [math(ad=bc)] [math(\therefore)] 비례식의 내항의 곱과 외항의 곱은 같다. |
2. 비례배분
比 例 配 分 / proportional distribution전체의 양을 주어진 비로 배분하는 것이다. 따라서 배분한 각각의 양의 총합은 전체의 양과 같다. 예를 들어 사탕 12개를 [math(1:2:3)]으로 비례배분하면 2개, 4개, 6개가 된다. [math(2+4+6=12)]이며, [math(2:4:6=1:2:3)]이므로 비례배분이 옳음을 알 수 있다.
2.1. 방법
주어진 비례식에 따라 주어진 전체의 양을 비례배분하는 방법은 다음과 같다.비례식의 한 항에서 비례식의 모든 항의 합을 나눈 값을 전체의 양에 곱하면, 비례식의 그 항에 해당하는 배분치가 나온다. 이를 수학적인 표현으로 쓰면 다음과 같다.
전체의 양 [math(n)]([math(n)]은 양의 실수)을 [math(a_1:a_2: ... :a_k)]([math(a_1, a_2, ..., a_k)]는 양의 실수)의 비로 비례배분한 결과는 다음과 같다. [math(\displaystyle\frac{na_1}{\displaystyle\sum_{i=1}^ka_i}, \displaystyle\frac{na_2}{\displaystyle\sum_{i=1}^ka_i},\, ...,\, \displaystyle\frac{na_k}{\displaystyle\sum_{i=1}^ka_i})]
|
기초적인 직렬 전기 회로에 저항이 여러 개 연결되어 있을 경우 각 저항 양단에 걸리는 전압을 계산할 때 쓸 수 있다.