최근 수정 시각 : 2021-11-29 11:41:40

비례식


[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin:0 -10px -5px; word-break: keep-all;"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="letter-spacing: -1px"
{{{#!wiki style="margin:-6px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해) · 부등식( 절대부등식) · 방정식( 풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 초월수) · 초실수) · 복소수( 허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마 · 반군 · 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 텐서( 텐서곱) · 벡터 공간( 선형사상) · 가군(Module) · 내적 공간( 그람-슈미트 과정 · 수반 연산자)
정리 · 추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 층 이론( 층들) · 토포스 이론 · 타입 이론
대수기하학 대수다양체 · 스킴 · 사슬 복합체( 에탈 코호몰로지) · 모티브
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼 정리
표현론
대수적 위상수학 호모토피
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}}}}

1. 개요2. 내항의 곱과 외항의 곱이 같다는 증명3. 비례배분
3.1. 방법
4. 관련 문서

1. 개요

/ proportional expression

비의 값이 같은 두 비를 나타낸 식. 따라서 비례식은 등식이며, 비례식에는 0이 나올 수 없다. 비례식에서 안쪽에 있는 두 항을 내항, 바깥쪽에 있는 두 항을 외항이라고 한다. 비례식에서 내항의 곱과 외항의 곱은 같다. 예를 들어, 비례식 [math(2:3=4:6)]에서는 3, 4가 내항이고, 2, 6이 외항이다. 3×4=2×6=12이므로 내항의 곱과 외항의 곱은 같다.

초등학교 6학년 수학 교육과정에 나오는 개념이다. 6학년 때는 비례식을 가지고 비례배분을 하게 된다. 중학교 때 방정식의 활용에 비례배분, 백분율, 비례식이 응용된다. 고1 올라와서 " 가비의 이"라고 상대적으로 복잡한 형태의 등식으로 나온다.

2. 내항의 곱과 외항의 곱이 같다는 증명

비례식 [math(\displaystyle{a:b=c:d})]가 있다.([math(a, b, c, d)]는 양의 실수) [math(\displaystyle{a:b=c:d})]는 결국 [math(\displaystyle\frac{a}{b}=\frac{c}{d})]와 같다. 양변에 [math(bd)]을 곱하면 [math(ad=bc)]이다. 따라서, 비례식의 내항의 곱과 외항의 곱은 같다.

3. 비례배분

/ proportional distribution

전체의 양을 주어진 비로 배분하는 것이다. 따라서 배분한 각각의 양의 총합은 전체의 양과 같다. 예를 들어 사탕 12개를 1:2:3으로 비례배분하면 2개, 4개, 6개가 된다. 2+4+6=12이며, 2:4:6=1:2:3이기 때문이다.

3.1. 방법

주어진 비례식에 따라 주어진 전체의 양을 비례배분하는 방법은 다음과 같다.

비례식의 한 항에서 비례식의 모든 항의 합을 나눈 값을 전체의 양에 곱하면, 비례식의 그 항에 해당하는 배분치가 나온다. 이를 수학적인 표현으로 쓰면 다음과 같다.
전체의 양 [math(n)]([math(n)]은 양의 실수)을 [math(a:b:c: ... :z)]([math(a, b, c, ..., z)]는 양의 실수)의 비로 비례배분한 결과는 [math(\displaystyle\frac{an}{a+b+c+...+z}, \displaystyle\frac{bn}{a+b+c+...+z}, \displaystyle\frac{cn}{a+b+c+...+z},\, ...,\, \displaystyle\frac{zn}{a+b+c...+z})]이 된다.

기초적인 직렬 전기 회로에 저항이 여러 개 연결되어 있을 경우 각 저항 양단에 걸리는 전압을 계산할 때 쓸 수 있다.

4. 관련 문서