최근 수정 시각 : 2022-04-23 19:06:18

결합법칙

[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin:0 -10px -5px; word-break: keep-all;"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="letter-spacing: -1px"
{{{#!wiki style="margin:-6px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해)) · 부등식( 절대부등식) · 방정식( 풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 초월수) · 초실수) · 복소수( 허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마 · 반군 · 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 선형사상 · 가군(Module)
정리 · 추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
분야와 관심대상
대수기하학 대수다양체 · 스킴 · 에탈 코호몰로지 · 모티브 · 사슬 복합체
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼
표현론
기타 및 관련 문서
수학 관련 정보 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}}}}

연산
Numbers and Operations
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=#765432> 수 체계 자연수 ( 홀수 · 짝수 · 소수 · 합성수 ) · 정수 · 유리수 ( 정수가 아닌 유리수 ) · 실수 ( 무리수 · 환원 불능 · 초월수 ) · 복소수 ( 허수 ) · 사원수
표현 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자 ) · 기수법 · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법 ) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분 ) · 소수 ( 무한소수 )
연산 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈 ) · 역수 · 절댓값 · 제곱근 ( 이중근호 ) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 ) · 검산
방식 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기
용어 이항연산 · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙
기타 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 ) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2 ) · 0으로 나누기 · 0의 0제곱 }}}}}}}}}

1. 개요2. 결합법칙이 일반적으로 성립하는 연산3. 결합법칙이 일반적으로 성립하지 않는 연산4. 같이 보기


結合法則 / Associativity

1. 개요

수학에서 쓰는 용어 중 하나.

원소 a, b, c를 포함한 집합 S와 연산 *가 정의되어 있을 때,
a * (b * c) = (a * b) * c
가 성립하면 집합 S에서 연산 *에 대해 결합법칙이 성립한다고 한다.

반례로 a * (b * c) ≠ (a * b) * c 가 되는 경우가 하나라도 나온다면 결합법칙은 일반적으로 성립하지 않는다.

2. 결합법칙이 일반적으로 성립하는 연산

특별한 언급이 없는 한 연산을 다루는 집합 S는 복소수 범위이다.

+ (덧셈)
× (곱셈)
× (곱셈: 곱셈이 정의된 행렬 범위)
× (곱셈: 사원수 범위)
∘ (둘 이상의 함수의 합성)
* (합성곱: 라플라스 변환 관련 연산)
∘ (아다마르 곱: 행렬 범위)
# (연결합: 위상)

3. 결합법칙이 일반적으로 성립하지 않는 연산

특별한 언급이 없는 한 연산을 다루는 집합 S는 복소수 범위이다.

- (뺄셈)
÷ (나눗셈, 당연히 0으로 나누면 안 된다.)
↑ ( 테트레이션)
× (곱셈: 벡터의 벡터적)
× (곱셈: 팔원수 범위)

4. 같이 보기