최근 수정 시각 : 2022-03-06 15:40:06

정수


파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
다른 뜻에 대한 내용은 정수(동음이의어) 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin:0 -10px -5px; word-break: keep-all;"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="letter-spacing: -1px"
{{{#!wiki style="margin:-6px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해)) · 부등식( 절대부등식) · 방정식( 풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 초월수) · 초실수) · 복소수( 허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마 · 반군 · 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 선형사상 · 가군(Module)
정리 · 추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
분야와 관심대상
대수기하학 대수다양체 · 스킴 · 에탈 코호몰로지 · 모티브 · 사슬 복합체
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼
표현론
기타 및 관련 문서
수학 관련 정보 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}}}}

수 체계
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
사원수 [math(mathbb H)]
↑ 확장 ↑
복소수 [math(mathbb C)]
대수적 폐포, 행렬 표현, 순서쌍 구성 등 ↑ [[허수|허수 [math(\mathbb{C}]]
실수 [math(mathbb R)]
완비화, 데데킨트 절단 등 ↑ 무리수 [math(mathbb{R} setminus mathbb{Q})]
유리수 [math(mathbb Q)]
곱셈의 역원 정수가 아닌 유리수 [math(\mathbb{Q} \setminus \mathbb{Z})]
정수 [math(mathbb Z)]
덧셈의 역원 음의 정수 [math(\mathbb{Z} \setminus \mathbb{N})]
범자연수 [math(mathbb N_0)]
↑ 자연수의 집합론적 구성 ↑
[math(0)]
소수 [math(\mathbb P)] · 초실수 [math(\mathbb R^{\ast})] · 대수적 수 [math(\mathbb A)] · 초월수 [math(\complement {\mathbb A})] · 벡터 공간 [math(\mathbb V)] }}}}}}}}}


1. 개요2. int형 변수(정수형 변수)
2.1. 닫혀 있는 연산
3. 목록4. 둘러보기 틀

1. 개요

/ Integer[英] / Zahlen[獨][3]

[math(n)]이 자연수일 때, [math(n+x=0)][4]을 만족하는 모든 [math(x)], 모든 [math(n)], [math(0)]을 통틀어 '정수'라고 한다. 그리고 특정 [math(n)]에 대한 [math(x)]의 표기를 [math(x=-n)]으로 한다.

정수 내에서는 자연수를 양의 정수라 부르며, [math(\{ -1,\,-2,\,-3,\cdots \} )]를 음의 정수라고 한다. [math(0)]은 양의 정수도, 음의 정수도 아닌 정수이다. 집합 기호 표현으로는 독일어의 Zahlen의 앞글자에서 따온 [math( \mathbb{Z} )]를 사용한다.[5] 한자 '정()-'은 가지런하다는 뜻을 담고 있다.

유리수의 기약분수 표현에서 분모가 [math(1)]인 것들만이 정수가 된다. 임의의 실수는 정수 [math(n)]과 [math(0 \le x < 1 )]인 소수 [math(x)]의 합으로 유일하게 나타낼 수 있다는 성질이 있고, 여기서 [math(x)]가 [math(0)]일 때만이 정수가 되는 것은 당연하다. 이때 [math(n)]을 정수부분, [math(x)]를 소수부분이라 한다. 상용로그의 지표와 가수를 생각하면 된다. [6]

정수(와 자연수)의 성질을 연구하는 학문을 정수론이라 한다. 항목을 참고하면 알겠지만 정수론은 수학의 굵직한 분야 중 하나고, 어찌 보면 이는 정수가 실수보다 복잡한 성질을 갖고 있다는 의미이다.

이 정수론에서는 정수 뿐만 아니라, 정수와 비슷하게 덧셈과 곱셈이 정의되고 닫혀 있는 여러 가지 '정수 비슷한 집합'들도 생각한다.[7] 대표적인 예로 정수 [math(a)]가 square free일 때[8] [math(\mathbb{Z}\left[\sqrt{a}\right] = \left\{ n + m \sqrt{a} : n, m\in \mathbb{Z} \right\})] 같은 집합을 생각할 수 있다. [math(a=-1)]일 때 이 집합은 실수부와 허수부가 모두 정수인 가우스 정수(Gaussian integer)라는 이름으로 불린다. 이 가우스 정수에서는 [math(2)]가 소수가 아니게 된다. [math(2=\left(1+i\right)\left(1-i\right))]이기 때문. [math(\sqrt{a})]를 공통수학에서 나오는 3차 단위근 [math(\omega)][9]으로 바꾸면 이 집합은 아이젠슈타인 정수(Eisenstein integer)라는 이름이 붙고, 페르마의 마지막 정리에서 [math(n=3)]인 경우를 증명할 때 사용된다. [10]

컴퓨터 분야에서는 정확도 손실이 불가피한 실수보다는 표현이 확실한 정수가 선호된다. 어찌 보면 암호학이나 전산학 등의 이산수학이 발전하면서, 쓸모없는 정수론에 그나마 눈곱만큼의 수요가 생겼다고 볼 수도 있겠다.

2. int형 변수(정수형 변수)

int형 변수는 실생활에서는 거의 쓰이지 않지만 C언어와 아두이노에서 아주 많이 사용된다.
비트 수에 따라 다르며, 정수형 중 가장 작은 short 형의 경우 최소값이 -32768, 최댓값이 32767이다.

2.1. 닫혀 있는 연산

  • 나눗셈을 제외한 사칙연산 전부.
  • 실수부 함수 [math(\Re)][11], 허수부 함수 [math(\Im)][12]
  • 부호 함수 [math(\mathrm{sgn})]
  • 집합 판별 함수 [math(\bold{1}_{\mathbb P}, \bold{1}_{\mathbb N}, \bold{1}_{\mathbb Z}, \bold{1}_{\mathbb Q}, \bold{1}_{\mathbb I}, \bold{1}_{\mathbb R})] 등
  • 어림할 때의 함수 [math(\lfloor \, \rfloor,\lceil \, \rceil)]

3. 목록

파일:상세 내용 아이콘.svg   자세한 내용은 분류:정수 문서
번 문단을
부분을
참고하십시오.

4. 둘러보기 틀

연산
Numbers and Operations
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=#765432> 수 체계 자연수 ( 홀수 · 짝수 · 소수 · 합성수 ) · 정수 · 유리수 ( 정수가 아닌 유리수 ) · 실수 ( 무리수 · 환원 불능 · 초월수 ) · 복소수 ( 허수 ) · 사원수
표현 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자 ) · 기수법 · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법 ) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분 ) · 소수 ( 무한소수 )
연산 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈 ) · 역수 · 절댓값 · 제곱근 ( 이중근호 ) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 ) · 검산
방식 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기
용어 이항연산 · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙
기타 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 ) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2 ) · 0으로 나누기 · 0의 0제곱 }}}}}}}}}



[英] 영어 [獨] 독일어 [3] 임의의 정수의 미지수나 집합 기호로 독일어의 약자인 [math(Z)] 내지 [math( \mathbb{Z} )]를 쓰기도 한다. [4] 이때 [math(x)]를 '덧셈에 대한 역원'이라고 한다. [5] 정수 한정이 아니라 그냥 '숫자', '수'라는 의미도 있다. 간단히, Zahlen 의 동사형인 zahlen 이 하나하나 '세다'라는 의미이다. 친숙한 용례로는 Zahlenteufel(수학귀신). 영어로도 정수론을 number theory 라고 하고, 독어로도 Zahlentheorie 니 맥락이 닿아 있는 표현. [6] 이렇게 보면 실수가 먼저이고 정수가 나중이라고 보기 쉽고 고등학교 과정까진 (심지어 수학과를 뺀 다른 대학교 과정에서도) 이런 식으로 배우는 것이 보통이다. 하지만 현대수학에선, 당장 대학교 수학과 학부 과정에 이르러선, 오히려 그 반대로 가는 것이 맞는다. 현대수학에서는 공리적으로 접근하므로 가장 구성하기 쉬운 자연수에서 시작해서 정수, 유리수, 실수 등으로 확장해나가는 방식을 사용한다. 즉, 정수로부터 (일단 유리수를 만든 다음 여기서) 실수를 '만들어내는' (정확히 말하자면 '확장하는') 것이 맞는다. 물론, 정수도 자연수로부터 만들어지는 것이다. 물론 이건 수학적인 관점, 특히 대수학(algebra)적 관점에 치중한 것이고, 자연계에서 측정되는 물리량들이 모두 실수인 것을 생각하면 생각보다 복잡한 문제이겠다. 사실, 현대수학이 탄생하기 이전 약 백수십여 년 전만 해도 유리수까지만 수(number) 취급을 하였고, 실수는 수가 아닌 다른 것(magnitude) 취급을 하였다.) [7] 엄밀하게는 대수학(Ring)을 참고하면 된다. [8] [math(n^{2}\mid a)]면 [math(n=\pm 1)] [9] [math(\omega^2 + \omega + 1 = 0)]의 복소근이며, [math((\omega - 1)(\omega^2 + \omega + 1) = \omega^3 -1)] 이므로 [math(\omega^3 = 1)] 의 허근이기도 하다. [10] 이런 게 무슨 쓸모냐며 까는 이들도 있지만, 이 개념은 현대정수론에서 무척 중요한 역할을 하는 녀석이다. [11] [math(\Re(x) = x \in \mathbb{Z})] [12] [math(\Im(x) = 0 \in \mathbb{Z})]



파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r58에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r58 ( 이전 역사)
문서의 r ( 이전 역사)