수와
연산 Numbers and Operations |
|||
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px" |
<colbgcolor=#765432> 수 체계 | 자연수 ( 홀수 · 짝수 · 소수 · 합성수 ) · 정수 · 유리수 ( 정수가 아닌 유리수 ) · 실수 ( 무리수 · 환원 불능 · 초월수 ) · 복소수 ( 허수 ) · 사원수 | |
표현 | 숫자 ( 아라비아 숫자 · 로마 숫자 · 그리스 숫자 ) · 기수법 · 진법 ( 십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법 ) · 분수 ( 분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분 ) · 소수 ( 무한소수 ) | ||
연산 | 사칙연산 ( 덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈 ) · 역수 · 절댓값 · 제곱근 ( 이중근호 ) · 거듭제곱 · 로그 ( 상용로그 · 자연로그 ) · 검산 | ||
방식 | 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 | ||
용어 | 이항연산 · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙 | ||
기타 | 수에 관련된 사항 ( 0과 1 사이의 수 · 음수 ) · 혼합 계산 ( 48÷2(9+3) · 111+1×2=224 · 2+2×2 ) · 0으로 나누기 · 0의 0제곱 | }}}}}}}}} |
[[대수학|대수학 Algebra ]]
|
||||
{{{#!wiki style="margin:0 -10px -5px; word-break: keep-all;" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="letter-spacing: -1px" {{{#!wiki style="margin:-6px -1px -11px" |
이론 | |||
기본 대상 | 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해)) · 부등식( 절대부등식) · 방정식( 풀이 · 근( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술) | |||
수 체계 | 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 초월수) · 초실수) · 복소수( 허수) · 사원수 · 대수적 수 · 벡터 공간 | |||
다루는 대상과 주요토픽 | ||||
대수적 구조 | ||||
군(group) | 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리 | |||
환(ring) | 아이디얼 | |||
체(field) | 갈루아 이론 | |||
대수 | 가환대수 · 리 대수 · 불 대수( 크로네커 델타) | |||
마그마 · 반군 · 모노이드 | 자유 모노이드 · 가환 모노이드 | |||
선형대수학 | 벡터 · 행렬 · 선형사상 · 가군(Module) | |||
정리 · 추측 | ||||
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결 | ||||
분야와 관심대상 | ||||
대수기하학 | 대수다양체 · 스킴 · 에탈 코호몰로지 · 모티브 · 사슬 복합체 | |||
대수적 정수론 | 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리 | |||
가환대수학 | 스펙트럼 | |||
표현론 | ||||
기타 및 관련 문서 | ||||
수학 관련 정보 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 | }}}}}}}}}}}} |
約 分 / Reduction[1]
1. 개요
수학에서 분수의 분자와 분모를 그의 공약수로 나눠서 간단하게 하는 문제 또는 일이다. 반대말은 배분이다.최대공약수를 배우고 나서 약분 공부에 들어가야 한다. 이 원리가 통분과 같이 6학년 때 비의 성질, 비례식의 성질(가장 작은 자연수의 비로 바꾸기), 백분율, 비례배분, 분수와 소수의 혼합계산, 중학교 가면 정수와 유리수의 혼합계산에도 나오니 중요하다.
2. 방법
분수의 분자와 분모의 최대공약수로 나눈다. 기약분수가 되어 더 이상 약분을 할 수 없을 때까지, 즉 분자와 분모가 서로소가 될 때까지 이 과정을 반복한다. 이때 분자와 분모를 소인수분해한 후 공통인수(최대공약수 등)를 찾아 제거하면 편하다. 분자와 분모가 크다면 그냥 공약수로 나누기 위해서도 각각 소인수분해를 하는 것이 편리할 수 있다.분모와 분자가 숫자로만 이루어지지 않고 다항식으로 구성된 분수식에서는 분모와 분자를 인수분해하여 간단한 다항식의 곱으로 나타낸 뒤, 분모와 분자에 공통으로 존재하는 다항식을 약분하여 없앤다. 인수분해가 필요한 이유 중 하나이기도 하다.
분모 또는 분자에 무리식이 있는 경우에는 유리화하는 과정에서 약분을 하기도 한다.
하나의 분수뿐만 아니라 여러 분수의 곱셈식도 약분할 수 있는데, 곱셈 결과가 (각 분수의 분자들의 곱)/(각 분수의 분모들의 곱)이 된다는 점을 고려하여 분자와 분모에서 공통인수를 찾으면 된다.
3. 예시
24/36을 약분하면 다음과 같다.[math(\displaystyle \frac{24}{36} = \frac{\cancel 2\times12}{\cancel 2\times18} = \frac{12}{18} = \frac{\cancel 2\times6}{\cancel 2\times9} = \frac{6}{9} = \frac{\cancel 3\times2}{\cancel 3\times3} = \frac{2}{3})]
24, 36을 소인수분해하면 각각 23×3, 22×32이므로 공통인수(최대공약수)는 22×3이다. 따라서 분자와 분모를 각각 22×3으로 나누면 아래와 같이 약분된다.
[math(\displaystyle \frac{24}{36} = \frac{2\times\cancel{2^2\times3}}{3\times\cancel{2^2\times3}} = \frac{2}{3})]
다항식을 약분하는 경우에는 상수와 각 문자, 다항식에 대해 공통인수를 구하여 약분할 수 있고, 이때 인수분해를 이용할 수 있다. 예를 들면 다음과 같다. 단, a≠0, b-c≠0이다.
[math(\displaystyle \frac{4a(b^2-c^2)}{6a^2(b-c)} = \frac{2^2\times a(b-c)(b+c)}{2\times3\times a^2(b-c)} = \frac{2(b+c)}{3a})]
4. 특정한 경우의 약분
- 분자와 분모(≠0)가 같은 분수는 1로 약분된다.
- 분자가 분모(≠0)의 배수인 가분수는 (분자)/(분모)의 정수로 약분된다.
- 분자와 분모의 일의 자리부터 n자리가 모두 0이고, 그 이전의 자릿수를 떼어낸 결과의 두 수가 서로소인 경우, 분자와 분모를 각가 10n으로 나누면 된다. 예를 들어 1000/1700에서는 끝 2자리(십의 자리와 일의 자리)가 모두 0이고, 이 2자리를 떼어낸 두 수는 각각 10, 17로 서로소이다. 따라서 약분한 결과는 10/17이다.
- 분자와 분모의 가장 큰 자리부터 n자리가 서로 같고, 그 이후의 자릿수가 모두 0이면 분자가 더 큰 가분수의 경우 10(분자의 0의 개수)-(분모의 0의 개수)의 정수로, 분모가 더 큰 경우 1/10(분모의 0의 개수)-(분자의 0의 개수)으로 약분된다. 예를 들어 1300/130은 분자와 분모의 가장 큰 자리부터 2자리가 13으로 서로 같고, 분자가 더 크며, 분자의 0의 개수가 분모보다 1 많으므로 102-1=10으로 약분된다. 또, 8/800의 경우는 분자와 분모의 가장 큰 자리부터 1자리가 8로 서로 같고, 분모가 더 크며, 분모의 0의 개수가 분자보다 2 많으므로 1/102=1/100(=0.01)으로 약분된다.
- 항등함수를 미분할 경우에도 약분과 비슷하게 된다. [math(\dfrac{\mathrm{d}x}{\mathrm{d}x} = 1)]이 성립한다.
- 더 나아가 [math(\dfrac{\mathrm{d}y}{\mathrm{d}x} f(x))]에서 [math(\mathrm{d}x)]를 '인수'처럼 취급해서 [math(\mathrm{d}y = f(x)\,\mathrm{d}x)]로 쓸 수 있다. 이렇게 할 수 있는 이유는 미분형식 문서 참조.
5. 관련 문서
[1]
원래는 '간단히 만든다'라는 뜻이다.