코사인은(는) 여기로 연결됩니다.
작곡가 Cosine에 대한 내용은
EmoCosine 문서, 별명이 코사인인 곡에 대한 내용은
Colours of Sorrow
문서
참고하십시오.#!wiki style="display: inline; display: none;"
, }}}
이 문서는 토론을 통해 다음의 합의사항들이 합의되었습니다. 합의된 부분을 토론 없이 수정할 시 제재될 수 있습니다.
토론 합의사항 | |
{{{#!wiki style="margin: 0 -10px -5px; min-height: 26px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -6px -1px -11px" |
* 무한급수(테일러 급수)로 사인과 코사인으로 나타내는 것을 '정의'로 인정하되 해석기하학적인 정의(평면좌표와 원의 방정식을 이용한 정의)보다 앞서 서술하지 않는다. |
}}}}}}}}} |
삼각함수의 관련 둘러보기 틀
|
||||||||||||||||||||||||||||||||||||||||||||
|
1. 개요
三 角 函 數 | trigonometric function[1] |
삼각비에서 쓰이는 정의역을 예각[2]에서 일반각[3]으로 확장시킨 것을 삼각함수라고 한다.
2. 일반각과 삼각비
일반각을 정의하는 방법에는 도([math(\degree)])를 단위로 하는 육십분법과 라디안([math(\rm rad)])을 단위로 하는 호도법이 있다.-
육십분법(단위: [math(\degree)])은 시초선을 기준([math(0\degree)])으로 하여 1회전을 [math(360\degree)]로 정의하는 각이다.
자세한 내용은 각 문서 참고하십시오.
-
호도법(단위: [math(\rm rad)])은 부채꼴에서 중심각의 크기와 호의 길이가 반지름에 비례한다는 특징과, '원주가 지름의 [math(\pi)]배(=원주가 반지름의 [math(2\pi)]배)'라는 성질을 이용하여 정의되는 각이다.
차원이 없다.[4]
자세한 내용은 라디안 문서 참고하십시오.
-
삼각비를 일반화, 즉 넓은 범위로 확장한 함수(충분조건)이므로 그 기호와 기원 역시 삼각비의 기원과 동일한 것으로 알려져 있다.[5]
자세한 내용은 삼각비 문서 참고하십시오.
3. 정의
3.1. 해석기하학: 좌표와 원으로 정의하기
좌표평면 상 원점 [math(\rm O)]가 중심인 단위원을 고려하자. 단위원 위의 한 점 [math({\rm P}(x,\,y))]에 대하여 [math(x)]축의 양의 방향을 시초선[6]으로 잡는다. [math(\rm O)]를 중심으로 시초선에서 반시계 방향 회전을 각의 양의 방향으로 잡고, 그 각의 크기를 [math(\theta)]라고 하면, 다음으로 정의한다.
[math(\displaystyle \begin{aligned} \sin{\theta}&:=y \\ \cos{\theta}&:=x \\ \tan{\theta}&:=\frac{y}{x} \quad (x \neq 0) \end{aligned} )] |
동경이 몇 사분면에 위치하는지에 따라 삼각함수의 부호는 달라진다.
<colbgcolor=#efefef,#555555> 동경의 위치 | 1사분면 | 2사분면 | 3사분면 | 4사분면 |
사인의 부호 | [math(+)] | [math(+)] | [math(-)] | [math(-)] |
코사인의 부호 | [math(+)] | [math(-)] | [math(-)] | [math(+)] |
탄젠트의 부호 | [math(+)] | [math(-)] | [math(+)] | [math(-)] |
그동안 직각삼각형으로만 정의해왔던 것에 익숙한 사람은 위와 같은 정의가 낯설 수 있다. 하지만 잘 생각해보면 [math(\theta)]가 예각일 때, 위의 관계식은 빗변의 길이가 1인 직각삼각형에서 삼각비를 정의했던 것과 완전히 같다는 것을 알 수 있다. 차이점이라면 더 이상 (음수가 될 수 없는) '길이' 개념에서 벗어나 '좌표'를 이용하기 때문에 직각삼각형에 구애받을 필요가 없고, 따라서 [math(\theta)]가 일반각으로 확장된다.
다음과 같이 삼각함수의 역수를 정의한다.
[math(\displaystyle \begin{aligned} \sec{\theta}&:=\frac{1}{\cos{\theta}}=\frac{1}{x} \quad &&(x \neq 0) \\ \csc{\theta}&:=\frac{1}{\sin{\theta}}=\frac{1}{y} \quad &&(y \neq 0) \\ \cot{\theta}&:=\frac{1}{\tan{\theta}}=\frac{x}{y} \quad &&(y \neq 0) \end{aligned} )] |
좌표평면 상 원점 [math(\rm O)]가 중심이고, 반지름이 [math(r)]인 원 위의 점 [math((x,\,y))]에 대해서도 동일한 방법으로 정의가 가능하며, 아래와 같다.
[math(\displaystyle \begin{aligned} \sin{\theta}&:=\frac{y}{r} \\ \cos{\theta}&:=\frac{x}{r} \\ \tan{\theta}&:=\frac{y}{x} \end{aligned} )] |
주의해야 할 것은 거듭제곱 꼴로 나타낸 경우, 예를 들어 [math(\sin^{n}{\theta})], 그것은 [math(n)]번 함수를 합성한 것이 아닌 함숫값의 [math(n)]제곱의 값을 의미한다. 즉,
[math(\displaystyle \begin{aligned} \sin^{2}{\theta}=(\sin{\theta})^{2} \neq \sin{(\sin{\theta})} \end{aligned} )] |
3.2. 해석학: 무한급수로 정의
, '비율 판정법'에 대한 내용은
급수(수학)
문서
, 사인함수와 코사인함수 이외의 다른 삼각함수에 대한 테일러 급수에 대한 내용은
테일러 급수/목록
문서
참고하십시오.무한급수를 활용하여 삼각함수를 다음과 같이 테일러 급수로도 정의할 수 있다. 이 방법은 해석기하학에 의존하지 않으며 복소수나 정사각행렬 등으로도 확장할 수 있다. 이렇게 정의하면 원주율 [math(\pi)]는 코사인 함수의 근 중 가장 작은 양수의 2배로 정의된다. 기하학적으로 [math(\cos{(\pi/2)}=0)]을 반대로 접근하는 것인 셈. 그러면 단위원의 넓이는 [math(\pi)]이고 원주는 [math(2\pi)]가 되는데, 당연하겠지만 기존 기하학의 결과와 완전히 일치한다. 삼각함수를 기하학적으로 정의하면 삼각함수의 미적분에서 [math(\displaystyle \lim_{x\to0}\{(\sin x)/x\} = 1)]임을 증명하는 과정에서 기하학적인 원넓이의 공식을 이용하기 때문에 순환논리에 빠지지만(아래 특수한 극한값을 갖는 합성함수 항목 참조), 무한급수로 삼각함수를 정의하면 이 순환논리를 피할 수 있다.
[math(\displaystyle \begin{aligned} \sin x &=\sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n+1}}{(2n+1)!}\\&= x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots \\ \cos x &=\sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n}}{(2n)!}\\ &= 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\cdots \end{aligned} )] |
- [비율판정법으로 수렴·발산 여부 확인하기]
- ------
수열 [math(\{a_n\})]을 다음과 같이 가정하자.[math(a_n := \dfrac{x^n}{n!})] [math(\begin{aligned} \displaystyle \sin x &= x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots = \sum_{k=0}^\infty \left(-1\right)^{k}a_{2k+1} \\ \cos x &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots = \sum_{k=0}^\infty \left(-1\right)^ka_{2k}\end{aligned})] [math(\begin{aligned} \sin x &: -\dfrac{a_{2k+3}}{a_{2k+1}} \\ \cos x &: -\dfrac{a_{2k+2}}{a_{2k}} \end{aligned})] [math(-\dfrac{a_{k+2}}{a_k} = -\dfrac{\dfrac{x^{k+2}}{\left(k+2\right)!}}{\dfrac{x^k}{k!}}=-\dfrac{x^2}{\left(k+1\right)\left(k+2\right)})] [math(\displaystyle \lim_{k\to\infty}\frac{x^2}{\left(k+1\right)\left(k+2\right)}=0)]
비율판정법의 따름정리에 의하여 위에서 나타낸 식[math(\begin{cases}\displaystyle\sin x = \sum_{k=0}^\infty \left(-1\right)^{k}a_{2k+1} = \sum_{k=0}^\infty \frac{\left(-1\right)^{k}x^{2k+1}}{(2k+1)!} \\ \displaystyle \cos x = \sum_{k=0}^\infty \left(-1\right)^ka_{2k} = \sum_{k=0}^\infty \frac{\left(-1\right)^{k}x^{2k}}{(2k)!}\end{cases})]
또한 이 급수의 수열은 절대 수렴하는 수열이기 때문에 복소수를 대입하더라도 마찬가지로 정의에 따라 절대적으로 수렴함이 확인된다.[7]
다른 삼각함수에 대한 무한급수는 다음과 같다. [math(B_n)]은 베르누이 수열, [math(E_n)]은 오일러 수열이다.
[math(\begin{aligned} \displaystyle \tan{x} &= \sum_{n=1}^\infty \frac{ \left\{ \left( -4 \right)^n - \left( -16 \right)^n \right\}B_{2n}}{(2n)!} x^{2n-1} \\ &= \sum_{n=0}^{\infty} \dfrac {8x}{(2n+1)^2{\pi}^2-4x^2} \\ \sec{x} &= \sum_{n=0}^\infty \frac{ \left( -1 \right)^n E_{2n}}{(2n)!} x^{2n} \\ &= \sum_{n=0}^{\infty} \dfrac {(-1)^n(2n+1){\pi}}{\left(n+ \dfrac {1}{2}\right)^{\! 2}\!\!{\pi}^2-x^2} \\ \csc{x} &= \sum_{n=0}^\infty \frac{ \left\{ 2 \left( -1 \right)^n - \left( -4 \right)^n \right\}B_{2n}}{(2n)!} x^{2n-1} \\ &= \dfrac {1}{x} + 2x \sum_{n=1}^{\infty} \dfrac {(-1)^n}{x^2-(n{\pi})^2} \\ \cot{x} &= \sum_{n=0}^\infty \frac{ \left( -4 \right)^n B_{2n}}{(2n)!} x^{2n-1} \\ &= \dfrac {1}{x} + 2x \sum_{k=1}^{\infty} \dfrac {1}{x^2 -(k{\pi})^2}\end{aligned})] |
3.3. 해석학: 무한곱으로 사인·코사인 정의하기
한편 무한합이 아닌 무한곱으로도 삼각함수를 정의할 수 있는데, 카를 바이어슈트라스가 유도했다. 자세한 내용은 바이어슈트라스 분해 정리 문서를 참조하자.[math(\begin{aligned} \displaystyle \sin{(\pi z)} &= \pi z \prod_{k=1}^{\infty}\left(1 - \frac{z^2}{k^2}\right) \\ \cos{(\pi z)}&= \prod_{k=1}^{\infty}\left\{1 - \frac{4z^2}{(2k-1)^2}\right\}\end{aligned})] |
4. 항등식
- [math(\sin^{2}{\theta}+\cos^{2}{\theta}=1)]
- [math(\tan{\theta}=\dfrac{\sin{\theta}}{\cos{\theta}})]
- [math(\tan^{2}{\theta}+1=\sec^{2}{\theta})]
- [math(\cot^{2}{\theta}+1=\csc^{2}{\theta})]
- [math(\sin{(-\theta)}=-\sin{\theta})]
- [math(\cos{(-\theta)}=\cos{\theta})]
- [math(\tan{(-\theta)}=-\tan{\theta})]
- [math(\deg{(\sin{\theta})} = \deg{(\cos{\theta})} = 0)][8]
이상에서 복부호 동순이며, [math(n)]은 임의의 정수이다.
4.1. 삼각함수의 덧셈정리
5. 함수의 주기성 및 그래프
위 그래프는 각종 삼각함수의 그래프를 주치 구간에 대하여 나타낸 것이다. 나머지 구간은 주치 구간의 그래프가 반복된다.
삼각함수는 모두 주기함수[9]이며, 기본 주기가 [math(\pi)]인 탄젠트 함수, 코탄젠트 함수를 제외하고 모두 기본 주기가 [math(2\pi)]이다. 무한 개의 변곡점을 갖는다.
한편 코사인 함수, 시컨트 함수는 [math(y)]축에 대칭인 짝함수이고, 나머지 넷은 원점에 대칭인 홀함수이다.
5.1. 여러 가지 각의 삼각함수
[math(n)]이 정수일 때 다음이 성립한다.- [math(\sin{(n\pi\pm \theta)}=\pm (-1)^{n} \sin{\theta})]
- [math(\cos{(n\pi \pm \theta)}=(-1)^{n}\cos{\theta})]
- [math(\tan{(n\pi \pm \theta)}=\pm \tan{\theta})]
- [math(\sin{\biggl\{ \dfrac{(2n+1)\pi}{2} \pm \theta \biggr\}}=(-1)^{n} \cos{\theta})]
- [math(\cos{\biggl\{ \dfrac{(2n+1)\pi}{2} \pm \theta \biggr\}}=\mp (-1)^{n}\sin{\theta})]
- [math(\tan{\biggl\{ \dfrac{(2n+1)\pi}{2} \pm \theta \biggr\}}=\mp \cot{\theta})]
- [증명]
- ------
삼각함수의 덧셈정리를 적용한다.[math(\displaystyle \begin{aligned} \sin{(n\pi \pm \theta)}=\sin{(n\pi)}\cos{\theta} \pm \cos{(n \pi)} \sin{\theta} \end{aligned} )] [math(\displaystyle \begin{aligned} \sin{(n \pi)}&=0 \\ \cos{(n \pi)}&=(-1)^{n} \end{aligned} )] [math(\displaystyle \begin{aligned} \sin{(n\pi \pm \theta)}= \pm (-1)^{n} \sin{\theta} \end{aligned} )] [math(\displaystyle \begin{aligned} \cos{(n\pi \pm \theta)}&=\cos{(n\pi)}\cos{\theta} \mp \sin{(n \pi)} \sin{\theta} \\&=(-1)^{n}\cos{\theta} \end{aligned} )] [math(\displaystyle \begin{aligned} \tan{(n\pi \pm \theta)}&=\frac{\sin{(n\pi \pm \theta)}}{\cos{(n\pi \pm \theta)}} \\&=\frac{\pm (-1)^{n} \sin{\theta} }{(-1)^{n}\cos{\theta}} \\&=\pm \tan{\theta} \end{aligned} )]
마찬가지의 방법으로 삼각함수의 덧셈정리를 적용한다.[math(\displaystyle \begin{aligned} \sin{\biggl\{ \dfrac{(2n+1)\pi}{2} \pm \theta \biggr\}}=\sin{\biggl\{ \dfrac{(2n+1)\pi}{2} \biggr\}} \cos{\theta} \pm \cos{\biggl\{ \dfrac{(2n+1)\pi}{2} \biggr\}} \sin{\theta} \end{aligned} )] [math(\displaystyle \begin{aligned} \sin{\biggl\{ \dfrac{(2n+1)\pi}{2} \biggr\}}&=(-1)^{n} \\ \cos{\biggl\{ \dfrac{(2n+1)\pi}{2} \biggr\}}&=0 \end{aligned} )] [math(\displaystyle \begin{aligned} \sin{\biggl\{ \dfrac{(2n+1)\pi}{2} \pm \theta \biggr\}}=(-1)^{n} \cos{\theta} \end{aligned} )] [math(\displaystyle \begin{aligned} \cos{\biggl\{ \dfrac{(2n+1)\pi}{2} \pm \theta \biggr\}}&=\cos{\biggl\{ \dfrac{(2n+1)\pi}{2} \biggr\}} \cos{\theta} \mp \sin{\biggl\{ \dfrac{(2n+1)\pi}{2} \biggr\}} \sin{\theta} \\&=\mp(-1)^{n}\sin{\theta} \end{aligned} )]
}}}
자주 사용되는 형태를 정리하면 아래와 같다.
[math(\displaystyle \begin{matrix} \sin{(2n \pi \pm \theta)}=\pm \sin{\theta} \qquad \qquad & \cos{(2n \pi \pm \theta)}= \cos{\theta} \qquad \qquad & \tan{(2n \pi \pm \theta)}= \pm \tan{\theta}\\ \\ \sin{( \pi \pm \theta)}=\mp \sin{\theta} \qquad \qquad & \cos{( \pi \pm \theta)}= -\cos{\theta} \qquad \qquad & \tan{( \pi \pm \theta)}= \pm \tan{\theta}\\ \\ \sin{\biggl( \dfrac{\pi}{2} \pm \theta \biggr)}= \cos{\theta} \qquad \qquad & \cos{\biggl( \dfrac{\pi}{2} \pm \theta \biggr)}= \mp \sin{\theta} \qquad \qquad & \tan{\biggl( \dfrac{\pi}{2} \pm \theta \biggr)}= \mp \cot{\theta}\\ \\ \sin{\biggl( \dfrac{3\pi}{2} \pm \theta \biggr)}= -\cos{\theta} \qquad \qquad & \cos{\biggl( \dfrac{3\pi}{2} \pm \theta \biggr)}= \pm \sin{\theta} \qquad \qquad & \tan{\biggl( \dfrac{3\pi}{2} \pm \theta \biggr)}= \mp \cot{\theta} \end{matrix} )] |
이것을 외우지 않고, 임의의 각에 적용하는 방법은 아래와 같다.
- 임의의 각을 [math(\dfrac{\pi}{2}n \pm \theta)] (단, [math(n)]은 정수) 형태로 바꾼다.[10]
- [math(n)]이 홀수냐 짝수냐에 따라 다음을 진행한다.
- [math(n)]이 홀수이면, 사인을 코사인으로, 코사인을 사인으로, 탄젠트를 코탄젠트로 바꾼다.
- [math(n)]이 짝수이면, 삼각함수를 바꾸지 않고 그대로 진행한다.
- [math(\theta)]가 예각이라고 가정하고 [math(\dfrac{\pi}{2}n \pm \theta)]의 각이 나타내는 동경이 위치하는 사분면을 확인한다.
- 이 사분면에 원래 삼각함수가 양이면, [math(+)]를, 음이면 [math(-)]를 붙인다.
예로 [math(\sin{(35\pi/3)})]의 값을 구해보자. 우선 이 각은
[math(\displaystyle \frac{35\pi}{3}=\frac{\pi}{2}\cdot 23+\frac{\pi}{6} )] |
[math(\displaystyle \sin{\biggl( \frac{35\pi}{3} \biggr)}=-\cos{\biggl( \frac{\pi}{6} \biggr)}=-\frac{\sqrt{3}}{2} )] |
[math(\displaystyle \frac{35\pi}{3}=\frac{\pi}{2}\cdot 21+\frac{7\pi}{6} )] |
[math(\displaystyle \sin{\biggl( \frac{35\pi}{3} \biggr)}=+\cos{\biggl( \frac{7\pi}{6} \biggr)}=-\frac{\sqrt{3}}{2} )] |
이러한 유용한 공식이 나올 수 있는데는 삼각함수 자체가 주기함수이기 때문이다.
이 공식은 값이 큰 일반각을 다루기 쉽게 작은 각 또는 특수 각으로 고쳐 쉽게 일반각에 대한 삼각함수의 값을 구할 수 있다는데 의의가 있다. 또한 하틀리 변환에 사용되는 [math(rm cas)] 함수[11]를 계산할 때 유용하게 사용된다.
6. 삼각방정식과 삼각함수부등식
6.1. 삼각방정식
각의 크기가 미지수인 삼각함수를 포함하는 방정식을 삼각방정식이라 한다. 이 문단에서는 (삼각함수)[math(=)](상수) 꼴로 정리되는 것만 다룬다. 그 이유는 아주 특수한 경우를 제외하고는 손으로 풀지 못하고 수치해석 프로그램을 이용해야 하기 때문이다.[12][13] 후술할 복소형식을 이용할 수도 있으나, 대부분의 경우 환원 불능(casus irreducibilis)이 되어 유용하진 않다.이 삼각방정식을 푸는 방법을 여러가지가 있는데, 그것을 예를 통해 알아보자. 삼각방정식을 간단하게 정리하면 [math(\sin{x}=a)], [math(\cos{x}=a)], [math(\tan{x}=b)] ([math(a)], [math(b)]는 상수, [math(|a| \leq 1)]) 형태로 정리할 수 있다.
가장 간단한 방법은 그래프를 이용한 방법이다. 방정식 [math(f(x)=g(x))]는 곧 좌표평면 상 [math(y=f(x))], [math(y=g(x))]의 교점의 [math(x)]좌표임을 이용하면 된다. 예를 들어 [math(\cos{x}=a)]는 곧 [math(y=\cos{x})]와 [math(y=a)]의 교점의 [math(x)]좌표를 구하면 된다. 아래와 같이 [math(x=x_{1})] 또는 [math(x=x_{2})]가 구해진다.
또 하나의 방법은 단위원을 이용하는 것이다. 사인, 코사인, 탄젠트는 각각 단위원 위의 점에 의해서 정의된다.
- [math(\sin{x}=a)] 경우 단위원 위의 점의 [math(y)]좌표를 의미하므로 단위원과 [math(y=a)]와의 교점을 찾고, [math(x)]축의 양의 방향을 시초선으로 하여 원점으로 부터 교점 방향의 동경의 각을 구하면 된다.
- [math(\cos{x}=a)] 경우 단위원 위의 점의 [math(x)]좌표를 의미하므로 단위원과 [math(x=a)]와의 교점을 찾고, [math(x)]축의 양의 방향을 시초선으로 하여 원점으로 부터 교점 방향의 동경의 각을 구하면 된다.
- [math(\tan{x}=b)] 경우 단위원 위의 점에 대하여 [math(y/x)]를 의미하므로 단위원과 [math(y=bx)]와의 교점을 찾고, [math(x)]축의 양의 방향을 시초선으로 하여 원점으로 부터 교점 방향의 동경의 각을 구하면 된다.
일반적으로 삼각방정식의 해를 구할 때는 주치 구간에 대하여 구하게 되는데[14] 일반적으로 해가 2개 존재하게 된다.[15] 그리고, 이 특정한 구간에 대하여 구한 해를 특수해라 한다.
이외에도 역함수를 이용하는 방법이 있다. 이 경우 단 하나의 특수해만을 갖는다.
6.1.1. 삼각방정식의 일반해
하지만 삼각함수 자체는 주기함수이기 때문에 해가 무한히 많다는 것을 그래프 상에서 직접 볼 수 있다. 따라서 실수 전체 구간에 대하여 구한 해를 일반해라 하는데, 그것을 구하는 방법을 알아보자.간단하게 생각해보면 해의 범위를 실수 전체로 늘리면, 주치 구간에서 구한 특수해에서 한 바퀴 정수배 만큼의 회전이 가해지거나 감해지는 경우에도 방정식의 해가 될 것이다. 즉
[math(\begin{aligned} \displaystyle x&=x_{1}+2n \pi \\ x&=x_{2}+2n \pi \end{aligned})] |
[math(\sin{x}=a)]의 경우 다음이 성립한다.
[math(x_{2}=\pi-x_{1} )] |
[math(\begin{aligned} \displaystyle x_{2}+2n \pi&=(\pi-x_{1})+2n \pi \\ &=(2n+1)\pi-x_{1} \end{aligned})] |
[math(x=n\pi+(-1)^{n}x_{1})] |
[math(\cos{x}=a)]의 경우 다음이 성립한다.
[math(x_{2}=2\pi-x_{1} )] |
[math(\begin{aligned} \displaystyle x_{2}+2n \pi&=(2\pi-x_{1})+2n \pi \\ &=(n+1)2\pi-x_{1} \end{aligned})] |
[math(x=2n\pi\pm x_{1})] |
[math(\tan{x}=b)]의 경우 다음이 성립한다.
[math(x_{2}=\pi+x_{1} )] |
[math(\begin{aligned} \displaystyle x_{2}+2n \pi&=(\pi+x_{1})+2n \pi \\ &=(2n-1)\pi+x_{1} \end{aligned})] |
[math(x=n \pi + x_{1})] |
위 결과는 특수해를 주치 구간에 대하여 구한 것으로 한정했지만 실제로는 [math(x_{1})]이 어떤 구간에 대한 특수해에 대하여 성립한다. 하지만 유용성과 난이도를 이유로 [math(x_{1})]을 주치 구간의 특수해 중 작은 것을 잡는 것이 관례적이다.
위 문단의 내용을 정리하면 삼각방정식의 한 특수해를 [math(\xi)], [math(a)], [math(b)]는 상수, [math(|a| \leq 1)], [math(n)]을 임의의 정수라 할 때 다음이 성립한다.
방정식 | 일반해 |
[math(\boldsymbol{\sin{x}=a})] | [math(x=n\pi+(-1)^{n}\xi)] |
[math(\boldsymbol{\cos{x}=a})] | [math(x=2n\pi \pm \xi)] |
[math(\boldsymbol{\tan{x}=b})] | [math(x=n\pi+\xi)] |
삼각방정식 [math(\sin{x}=\sin{a})] 같은 꼴의 경우 해가 [math(x=a)]로 생각하기 쉽다. 하지만 그것은 틀린 생각으로 일반해의 개념을 적용하여 [math(x=n\pi+(-1)^{n}a)]가 돼야 옳다.
이 일반해의 개념을 가지고, 재미있는 논의를 해볼 수 있다. 예를 들어 좌표평면 상 [math(\tan{(x^2+y^2)}=1)]은 어떤 그래프를 그리게 될까? 간단히 일반해의 개념을 사용하면
[math(\begin{aligned} \displaystyle x^2+y^2=n\pi+\frac{\pi}{4} \end{aligned})] |
[math(\begin{aligned} \displaystyle y-f(x)=k_{n} \end{aligned})] |
더 나아가, [math(\cos{e^x})], [math(sin{x^{-1}})] 같은 것도 생각해볼 수 있다.
6.2. 삼각함수부등식
삼각함수부등식을 푸는 것은 삼각방정식과 완전히 동일하다. 그래프와 단위원 모두 이용할 수 있다.주치 구간에 대하여 [math(\cos{x}>a)] (단, [math(|a| \leq 1)])을 푸는 것을 예로 들어 이 논의를 마치고자 한다.
위와 같이 그래프를 보면, [math(\cos{x}>a)]의 의미는 곧 [math(y=\cos{x})]의 그래프가 [math(y=a)]보다 위에 있는 구간의 [math(x)]좌표의 구간을 구하는 것과 같다. 따라서 [math(0\leq x < x_{1})] 또는 [math( x_{2}< x \leq 2 \pi)]가 그 해이다.
단위원을 통한 방법 또한 단위원 상의 점이 [math(x=a)] 보다 오른쪽에 있는 각의 범위를 구하면 되므로 같은 해를 구할 수 있다.
삼각방정식과 마찬가지로 구하는 구간을 지정하지 않는 경우 부등식의 해는 무한히 나오게 된다.
참고로 삼각부등식은 다른 것을 뜻하므로 혼동에 주의할 것.
7. 극한과 미적분
7.1. 특수한 극한값을 갖는 합성함수
그림과 같이 [math(0<\angle {\rm A}<\pi/2)]이고, [math(\overline{\rm AB}=\overline{\rm AC}=1)]을 만족하는 삼각형 [math(\rm BAC)]를 고려하자. 한편, 에서 변 [math(\rm AB)]의 연장선위의 [math(\rm P)]에서 변 [math(\rm AC)]에 내린 수선의 발을 [math(\rm C)]라 하자. 부채꼴 [math(\rm BAC)]의 넓이를 [math(S)]라 하면 다음이 성립한다.
[math(\triangle {\rm BAC}<S<\triangle {\rm PAC})] |
[math(\begin{aligned} \triangle {\rm BAC}&=\frac{1}{2}\cdot 1^{2} \cdot\sin{A} \\ S&=\frac{1}{2}\cdot 1^{2} \cdot A \\ \triangle {\rm PAC}&=\frac{1}{2} \cdot 1^{2} \cdot \tan{A} \end{aligned})] |
[math( \sin{A}<A<\tan{A})] |
[math( 1<\dfrac{A}{\sin{A}}<\dfrac{1}{\cos{A}} \quad \left(\because 0<A<\dfrac{\pi}{2} \right))] |
[math( \cos{A}<\dfrac{\sin{A}}{A}<1)] |
[math( \displaystyle \lim_{A\to 0^{+}}\dfrac{\sin{A}}{A}=1)] |
음의 각에 대하여 구하기 위하여 [math(t=-A)]로 치환하면 [math(t \to 0^{-})]일 때 [math(A \to 0^{+})]이고,
[math( \displaystyle \begin{aligned} \lim_{t\to 0^{-}}\dfrac{\sin{t}}{t}&=\lim_{A\to 0^{+}}\dfrac{\sin{(-A)}}{-A} \\ &=\lim_{A\to 0^{+}}\dfrac{-\sin{A}}{-A} \\&=\lim_{A\to 0^{+}}\dfrac{\sin{A}}{A} \\&=1 \end{aligned})] |
[math( \displaystyle \lim_{x\to 0}\dfrac{\sin{x}}{x}=1)] |
한편, 탄젠트에 대하선
[math( \displaystyle \begin{aligned} \lim_{x\to 0}\dfrac{\tan{x}}{x}&=\lim_{x\to 0}\dfrac{\sin{x}}{\cos{x}}\dfrac{1}{x} \\ &=\lim_{x\to 0} \frac{\sin{x}}{x} \frac{1}{\cos{x}} \\&=1 \cdot 1 \\&=1 \end{aligned})] |
위 사항을 정리하면, 아래와 같다.
[math( \displaystyle \begin{aligned} \lim_{x\to 0}\dfrac{\sin{x}}{x}&=1 \\ \lim_{x\to 0}\dfrac{\tan{x}}{x}&=1 \end{aligned})] |
이 결과는 [math(y=(sin x)/x)]의 그래프, [math(y=(tan x)/x)]의 그래프를 통해서도 알 수 있다. 간혹 [math((\cos x)/x)]의 극한은 왜 구하지 않냐고 궁금해하는 사람들도 있을 것인데, [math(y=(cos x)/x)]의 그래프의 모습에서 볼 수 있듯 원점에서 좌극한과 우극한이 같지 않아 극한값을 갖지 않는다.
현대 수학에서는 '논리의 엄밀성'을 근거로, 위와 같이 넓이를 이용한 증명 방식이 순환 논법이라 주장하기도 한다. 극한을 증명하기 위해 각 도형의 '넓이'를 이용하고 있는데 부채꼴의 넓이를 구하는 과정에서 순환 논법에 빠진다는 것[16]이다. 물론 이는 반지름이 [math(r)]인 원의 넓이가 [math(\pi r^2)]이라는 사실을 자명한 것이라 받아들임으로써 해결이 되지만, 현대 수학에서는 한정된 공리와 정의만을 이용하여 논리적인 연역법에 따라 증명된 것만 이용할 수 있기 때문에 '증명되어야 할 원의 넓이'가 '자연스러운 것'으로 쉽게 받아들여지지 않는다[17]는 것이다. 이 문단 참조.
이를 피하기 위해 나온 것이 바로 무한급수를 이용한 정의이다. 전술한 대로 무한급수를 이용한 정의는 임의의 실수뿐만 아니라 복소수에 대해서도 절대 수렴하므로 극한에서 문제없이 다룰 수 있으며, [math(\cos x = 0)]을 만족하는 최소 양수가 존재하며 그 [math(2)]배가 [math(\pi)]라는 것으로 해결이 된다. 기타 기하학적인 성질 역시 증명이 가능하지만, 무한급수 역시 극한의 개념이 선행되어야 자연스럽기 때문에 여전히 좋은 해결책은 아니다. 어디까지나 현대 수학, 그리고 청소년들에게 이걸 이렇게 가르치는 게 적절한지를 고민하는 수학교육학에서의 떡밥이므로 일반인들은 '그렇게 보는 해석도 있다' 정도의 수준으로 넘어가면 된다.
2015 개정 교육과정 기준으로는 미적분에서 처음 배우기 시작한다. 이 내용을 '삼각함수의 극한'으로 배우지만 실제로는 '삼각함수가 유리함수에 합성된 합성함수의 극한'을 배우는 것이다. 실제로 수업 시간, 교과서에서 [math(y= (\sin x)/x)], [math(y=(\tan x)/x)]의 그래프나 성질을 직접적으로 다루지 않기 때문이다. '삼각함수'라는 단원으로부터 분리되어 극한 단원 혹은 미적분 파트에서 다루는 이유도 이 때문이다. 이 내용은 사실 '삼각함수'와 더 밀접하지 않으며, 그래프들을 다루는 것은 교육적으로 별로 의미가 없다. 종전 2009 개정 교육과정 미적분Ⅱ 때처럼 삼각함수와 더 직접적인 관련이 있는 것처럼 보일 것을 우려하고, 다시 현 교육과정처럼 '극한' 단원 편입으로 바꾼 것도 교육적 적합성을 다시 고려했기 때문으로 보인다.
이 내용의 교육적인 의의는 어떤 실수에 대해 그 실수를 취한 삼각함수의 비가 무한히 작아질 때 어떤 값으로 수렴하는지 파악하고 이 때 ' 사인 법칙'과 '근사'[18]를 익히기 위해서 배우는 것이다. 이 정리는 바로 밑에 있는 삼각함수의 도함수를 증명하는 과정에서 사용된다. 이는 '로그함수의 극한'이라고 배우는 자연로그와도 유사하다.
참고로 이 극한값은 [math(A)]의 단위에 관계 없이 일정하다. 육십분법으로 나타낸 각 [math(\varphi)]는
[math(\begin{aligned}A = \dfrac\pi{180\degree}\varphi\end{aligned})] |
[math(\dfrac{A}{2} = \dfrac\pi{360\degree}\varphi)] |
[math(\sin\varphi < \dfrac\pi{180\degree}\varphi < \tan\varphi \quad \Leftrightarrow \quad \dfrac\pi{180\degree}\cos\varphi < \dfrac{\sin\varphi}\varphi < \dfrac\pi{180\degree})] |
[math( \begin{aligned} \lim\limits_{\varphi\to0\degree}\dfrac{\sin\varphi}\varphi &= \dfrac\pi{180\degree}\\& = \dfrac\pi{180\times1\degree}\\& = \dfrac\pi{180\times\dfrac\pi{180}} \\& = 1 \quad \left(\because 1\degree = \dfrac\pi{180}\right) \end{aligned})] |
7.2. 도함수
#!wiki style="display: inline; display: none;"
, }}}
7.3. 역도함수
#!wiki style="display: inline; display: none;"
, }}}
8. 역함수
9. 관련 함수
#!wiki style="display: inline; display: none;"
, }}}
10. 푸리에 급수
주기함수를 사인 및 코사인의 무한합으로 전개하는 것을 말한다.
11. 복소 및 극형식
11.1. 극좌표
11.2. 오일러 공식 관련
허수단위를 [math(i)]로 나타내면 오일러 공식에 의해 [math(e^{ix}=\cos x+i\sin x)]이므로[math( \begin{aligned} \cos x &= \dfrac{e^{ix}+e^{-ix}}2 \\ \sin x &= \dfrac{e^{ix}-e^{-ix}}{2i} \end{aligned})] |
[math( \begin{aligned} \cosh t &= \dfrac{e^t+e^{-t}}2 \\ \sinh t &= \dfrac{e^t-e^{-t}}2 \end{aligned})] |
[math(\begin{aligned} \cos x &= \cosh{ (ix)} \\ \sin x &= -i\sinh{ (ix)} \end{aligned})] | [math(\Leftrightarrow)] | [math(\begin{aligned} \cosh x &= \cos{ (ix)} \\ \sinh x &= -i\sin{ (ix)}\end{aligned})] |
[math( \begin{aligned} \sin x &= -i\sinh{ (ix)} \\ \cos x &= \cosh{ (ix)} \\ \tan x &= -i\tanh{ (ix)} \\ \csc x &= i\,\mathrm{csch}\,{(ix)} \\ \sec x &= \mathrm{sech}\,{(ix)} \\ \cot x &= i\coth{ (ix)} \end{aligned})] |
한편, 위 공식을 이용해 삼각함수의 함숫값을 대수적인 방법으로 구할 수 있다. 다만 대입하는 각이 특수각이 아닐 경우 환원 불능(Casus irreducibilis)[19]이 될 수 있으므로 주의해야 한다.[20]
11.3. 복소함수에서의 삼각함수의 절댓값
[math(z=x+iy)]일 때, 삼각함수의 덧셈정리를 사용하면[math( \begin{aligned} \sin z &= \sin(x+iy) = \sin x\cos iy + \cos x\sin iy \\ &= \sin x\cosh y+i \cos x\sinh y \\ \cos z &= \cos(x+iy) = \cos x\cos iy-\sin x\sin iy \\ &= \cos x\cosh y-i \sin x\sinh y \end{aligned})] |
다음이 성립한다.
[math( \begin{aligned} |\sin z|&=\sqrt{\sin^2x\cosh^2y+\cos^2x\sinh^2y} \\ |\cos z|&=\sqrt{\cos^2x\cosh^2y+\sin^2x\sinh^2y} \end{aligned})] |
[math( \begin{aligned} |\sin z|&=\sqrt{\sin^2x\cosh^2y+\cos^2x\sinh^2y} \\&=\sqrt{\sin^2x+\sin^2x\sinh^2y+\cos^2x\sinh^2y} \\& =\sqrt{\sin^2x+\sinh^2y} \\ |\cos z|&=\sqrt{\cos^2x\cosh^2y+\sin^2x\sinh^2y} \\&=\sqrt{\cos^2x+\cos^2x\sinh^2y+\sin^2x\sinh^2y} \\& =\sqrt{\cos^2x+\sinh^2y} \end{aligned})] |
11.4. 복소평면에서의 삼각함수의 그래프
|
|
[math(\sin z)] | [math(\csc z)] |
|
|
[math(\cos z)] | [math(\sec z)] |
파일:Trig-tan.png |
|
[math(\tan z)] | [math(\cot z)] |
12. 교과에서의 삼각함수
- 6차 교육과정: 공통수학(고1), 수학Ⅱ(자연계) - 공통수학은 마지막 단원, 수학 II는 2단원
- 7차 교육과정: 수학 10-가/수학 10-나(고1), 미분과 적분(자연계) - 수학 10-나 마지막 단원, 미분과 적분 1단원
- 삼각함수와 복소평면 삭제
- 2007 개정 교육과정: 수학(고1)[22], 수학Ⅱ(자연계)
- 2009 개정 교육과정: 미적분Ⅱ(자연계)
- 2015 개정 교육과정: 수학Ⅰ(고2·3 기본), 미적분(고2·3 심화)[23]
13. '삼각함수에 관한 식' 오역 의견
원서나 교과서 등에서는 사인 함수를 [math(\sin\theta)]로 서술하는 경우가 있다. 하지만 [math(\sin\theta)]는 함숫값을 나타내는 식이며, [math(\theta)]가 변수로 쓰이지 않는 이상 ' 함수' 자체가 아니라는 점에서 다소 엄밀함이 떨어진다. 반례로 [math(\log k)]의 경우, 그 자체가 로그함수가 아닌 로그라고 불린다. 그 외의 다른 함수를 설명할 때도 함수와 함숫값을 엄연히 구별하는데, 삼각함수에서는 잘 지키지 않는 점이 특이하다.영어(원문)의 경우, 삼각함수를 뜻하는 trigonometric function에서 'trigonometric'가 ' 삼각법의'를 뜻하는 형용사이다.[24] 언어적 구조만 보더라도 trigonometric은 수식언임이 자명하며, 이 구조를 그대로 한국어로 직역했을 때 '함수'라는 단어를 수식하는 건 '삼각법의'라는 걸 알 수 있다.
대한수학회에서의 trigonometric equations(직역: 삼각법의 방정식)의 정식 한국어 용어인 ' 삼각방정식'의 사례처럼 '삼각법의 식'에서 '-법의'를 생략하여 ‘삼각식’으로 번역할 수도 있었는데 그러지 못하였다. 그렇다고 '삼각함수의 식'으로 번역하자니 원문의 수식언 trigonometric는 '삼각함수의'가 아니기 때문에 그럴 수 없다.
14. 관련 문서
[1]
다른 이름으로 angle function(각 함수), circular function(
원 함수), goniometric function(각도 함수) 등이 있다.
[2]
[math(0\degree)]에서 [math(90\degree)]사이의 각
[3]
기존의 예각은 물론 예각이 아닌 각까지 포함하는 더 넓은 개념
[4]
보통
단위가 존재하지 않는다고 잘못 알려져 있다.
[5]
흔히 삼각함수와 동일한 것으로 착각하지만 삼각비에서는 [math(0 \degree)]와 [math(90 \degree)]에서 값이 정의되지 않는다. 단, 극한값은 존재한다.
[6]
사실
시초선은 시점이 [math(\rm O)]인 반직선일 뿐이며 위치는 어떻게 잡아도 상관이 없다. 굳이 [math(x)]축 양의 방향으로 잡은 이유는 [math(xy)]좌표평면과
극좌표계간의 변수 변환이 편리하기 때문이다.
[7]
절대수렴하는 수열합에 한해서는 수열의 배치를 바꾸더라도 수열합은 변하지 않는다. 이를 이용하여 복소수의 거듭제곱의 실수부와 허수부의 위치를 재조정해서 실수부와 허수부가 한 값으로 수렴함을 보일 수 있다. 다만 이는 절대수렴하지 않는 수열합에 대해서는 성립하지 않는 성질이다. 예를 들어서 [math(a_n={(-1)^n}/n)]이라고 하면, 이 수열은 수렴하지만 절대수렴하지 않는데, 이 경우 [math(\displaystyle \sum_{k=1}^\infty a_n)]의 순서를 재조정하면 원래 값의 2배, 3배 이상을 만드는 것도 가능하다. 하지만 절대수렴하는 수열인 [math(b_n=2^{-n})]의 경우, 이 수열은 순서를 어떻게 재조정하더라도 [math(\displaystyle \sum_{k=1}^\infty b_n=1)]이 보장된다.
[8]
즉, 사인함수와 코사인함수의
차수가 0이라는 의미이다.
[9]
임의의 실수 범위의 함수 [math(f)]에 대하여 적당한 상수 [math(k\ne 0)]을 잡을 때, [math(f)]의 정의역에 속하는 임의의 [math(x)]에 대하여 [math(f(x+k)=f(x))]가 성립하면, [math(f)]를 주기함수라 하고, [math(k)]를 [math(f)]의 주기라 한다. 주기 중 양의 최솟값을 기본 주기라고 한다.
[10]
보통 [math(\theta)]는 예각이나 특수각, 또는 나올 수 있는 양의 각 중 가장 작은 값을 택하나 필요에 따라 임의의 각, 음의 각을 택하여도 된다.
[11]
[math(\sin{x} + \cos{x})]
[12]
그 예로 [math(\tan{x}=(\pi/4)x)]의 해는
이것과 같이 나온다.
[13]
조건을 잘 설정한 경우 그래프를 그려 해결할 수도 있을 것이다.
[14]
이를
분지 절단(branch cut)이라고 한다.
[15]
이는 (삼각함수)[math(=)](상수) 꼴로 정리되는 방정식만 해당한다.
[16]
넓이를 엄밀하게 다루려면 적분이 선행되어야 하고, 적분을 다루기 위해서는 미분이 선행되어야 하는데, 미분을 다루려면 극한이 선행되어야 한다. 극한을 다루고 있는데 극한이 정립이 되어야 하는 결론에 다다르므로 순환 논법이다.
[17]
기하학적으로 극한의 개념을 쓰지 않고 원의 넓이가 [math(\pi r^2)]이라는 것을 증명하기가 대단히 어렵다.
[18]
샌드위치 정리 또는 조임 정리(squeeze theorem)
[19]
실수이지만, 허수단위를 없앨 수 없는 꼴
[20]
대표적인 예로
파섹이 있다. 2015년 이전까지 파섹을 정의하는 데 특수각이 아닌
[math(pi/648000)]라는 각도에 삼각함수를 취한 값이 들어갔었다. 2015년 이후부터는 [math(648000/\pi)]을 사용.
[21]
[math(\begin{aligned} \tan z&=\tan(x+iy)\\ &= \dfrac{\tan x + \tan iy}{1 - \tan x\tan iy} \\ &=\dfrac{\tan x+i \tanh y}{1-i \tan x\tanh y} \\ &=\dfrac{(\tan x+i\tanh y)(1+i\tan x\tanh y)}{1+\tan^2x\tanh^2y} \\ &=\dfrac{\tan x(1-\tanh^2y)+i\tanh y(1+\tan^2x)}{1+\tan^2x\tanh^2y} \\ &=\dfrac{\mathrm{sech}^2\,y\tan x+i\tanh y\sec^2x}{1+\tan^2x\tanh^2y} \end{aligned})] [22] 사상 최초로 삼각함수가 마지막 단원이 아니다. [23] 기본과 심화로 구분되었지만 두 과목은 엄밀히 같은 계층인 '일반선택과목'이다. 그러나 수학I은 수능 필수 출제범위라 모든 고등학생들이 이수해야 하는 반면 미적분은 수능 선택 출제범위라 이공계열 진학 예정 학생들만 이수한다. '수학Ⅰ'에서는 기본적인 개론과 함수의 그래프, 방정식 등을 다룬다면, '미적분'에서는 삼각함수의 덧셈정리, 반각공식, 배각공식, 극한, 미분, 적분 등을 다룬다. [24] 포털 검색 결과, trigonometry 번역 '삼각법'
[math(\begin{aligned} \tan z&=\tan(x+iy)\\ &= \dfrac{\tan x + \tan iy}{1 - \tan x\tan iy} \\ &=\dfrac{\tan x+i \tanh y}{1-i \tan x\tanh y} \\ &=\dfrac{(\tan x+i\tanh y)(1+i\tan x\tanh y)}{1+\tan^2x\tanh^2y} \\ &=\dfrac{\tan x(1-\tanh^2y)+i\tanh y(1+\tan^2x)}{1+\tan^2x\tanh^2y} \\ &=\dfrac{\mathrm{sech}^2\,y\tan x+i\tanh y\sec^2x}{1+\tan^2x\tanh^2y} \end{aligned})] [22] 사상 최초로 삼각함수가 마지막 단원이 아니다. [23] 기본과 심화로 구분되었지만 두 과목은 엄밀히 같은 계층인 '일반선택과목'이다. 그러나 수학I은 수능 필수 출제범위라 모든 고등학생들이 이수해야 하는 반면 미적분은 수능 선택 출제범위라 이공계열 진학 예정 학생들만 이수한다. '수학Ⅰ'에서는 기본적인 개론과 함수의 그래프, 방정식 등을 다룬다면, '미적분'에서는 삼각함수의 덧셈정리, 반각공식, 배각공식, 극한, 미분, 적분 등을 다룬다. [24] 포털 검색 결과, trigonometry 번역 '삼각법'