절대부등식 Inequalities |
||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all" |
코시-슈바르츠 부등식 | 산술·기하 평균 부등식 |
[math(\left({a_n})({b_n}\right)\ge\left({a_n}{b_n}\right))] | [math(\frac{a_n+b_n}{n}\ge\sqrt[n]{{a_n}{b_n}})] | |
젠센 부등식 | 영 부등식 | |
[math(\lambda_n f\left(x_n\right)\ge f\left({\lambda_n}{x_n}\right))] | [math(ab \leq \frac{a^p}{p}+\frac{b^q}{q})] | |
횔더 부등식 | 민코프스키 부등식 | |
[math(\|fg\|_1\le\|f\|_p\|g\|_q)] | [math(\|f+g\|_p\le\|f\|_p+\|g\|_p)] | |
마르코프 부등식 | 체비쇼프 부등식 | |
[math(\frac{E(X)}k\ge{\rm P}(X\ge k))] | [math(P(|X-\mu|<k\sigma)\geq1-\frac1{k^2})] | |
슈르 부등식 | ||
[math(a\left(x-y\right)\left(x-z\right)+b\left(y-z\right)\left(y-x\right)+c\left(z-x\right)\left(z-y\right)\geq0)] | ||
합 기호는 아인슈타인 합 규약을 일부 사용해 단축하였다. | }}}}}}}}} |
1. 개요
Young's inequality / Young 不等式[math(1/p+1/q=1)]일 때, [math(ab \leq \frac{a^p}{p}+\frac{b^q}{q})]가 성립한다.(등호는 [math(a^p = b^q)]일때만 성립) 영국의 수학자인 윌리엄 헨리 영이 고안했다.
횔더 부등식을 증명할 때 이용된다.
2. 증명
젠센 부등식이 사용되니 참조.[math(\ln(\frac{a^p}{p}+\frac{b^q}{q}))]에서 자연로그함수는
오목함수이니
젠센 부등식을 이용하면 [math(1/p\ln(a^p)+1/q\ln(b^q))]보다 큼을 알 수 있다.
로그법칙에 의해 [math(1/p\ln(a^p)+1/q\ln(b^q) = \ln{a}+\ln{b})]이다. 즉,
[math(\ln(\frac{a^p}{p}+\frac{b^q}{q}) \geq \ln{a}+\ln{b})]이다.
[math(\therefore ab \leq \frac{a^p}{p}+\frac{b^q}{q})]
로그법칙에 의해 [math(1/p\ln(a^p)+1/q\ln(b^q) = \ln{a}+\ln{b})]이다. 즉,
[math(\ln(\frac{a^p}{p}+\frac{b^q}{q}) \geq \ln{a}+\ln{b})]이다.
[math(\therefore ab \leq \frac{a^p}{p}+\frac{b^q}{q})]