최근 수정 시각 : 2022-01-25 20:16:07

증감표

해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수( 변분법) · 다변수 ( 동차 · 숨은 함수( 다가 함수)) · 그래프 · 대칭 · 증감표 · 극값 · 영점 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙 · 스펙트럼 정리
극한 엡실론-델타 논법( 수열의 극한) · 수렴 ( 균등수렴) · 발산 · 부정형 · 어림( 유효숫자 · 오차 · 불확도) · 근방 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미적분 미분 도함수 ( 편도함수) · 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점) · 미분형식 · 미분방정식 ( 풀이) · [math(boldsymbolnabla)] · 라그랑주 승수법
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 정적분 ( 예제) · 이상적분 · 중적분 ( 선적분 · 면적분 · 야코비안) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 ( 선적분의 기본정리) · 평균값 정리 ( 롤의 정리) · 스토크스 정리 ( 발산 정리 · 그린 정리) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 · 아다마르 변환) · 2학년의 꿈 · 리시 방법

해석
실수 · 좌표계 · 측도론 ( 측도 · 르베그 측도) · 실직선 · 유계( 콤팩트성) · 칸토어 집합 · 비탈리 집합
정리 · 토픽
복소
해석
복소수( 복소평면) · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 해석기하학 · 미분기하학 · 해석적 정수론 ( 소수 정리 · 리만 가설미해결) · 벡터 미적분학( 야코비 공식) · 확률론 ( 확률변수 · 중심극한정리) · 수치해석학 ( 유한요소해석 · 전산유체역학)
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 카오스 이론 · 오일러 방정식 · 퍼지 논리 · 거리함수 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학 }}}}}}}}}


1. 개요2. 예시3. 용도(고등학교 수학 내에서)
3.1. 함수의 증가, 감소, 극대와 극소 조사하기3.2. [math(f(x))]의 그래프의 오목, 볼록, 변곡점 판단하기3.3. 함수의 그래프 그리기
3.3.1. 예시
3.4. 그래프 그리기가 '혼란스러운' 경우3.5. 함수의 최대, 최솟값 찾기3.6. 방정식의 실근의 개수 구하기

1. 개요

증감표()는 함수의 증가와 감소를 나타낸 표로 특정한 함수의 그래프의 개형을 파악하기 위하여 함수의 증가와 감소, 변곡점(위로 볼록에서 아래로 볼록 또는 아래로 볼록에서 위로 볼록으로 변하는 지점)을 나타낸 표이다.

보통 왼쪽에서 첫 번째 열에는 위에서부터 차례로 [math(x)], [math(f'(x))], [math(f(x))], [math(f(x))]를 쓰며[1], 그 오른쪽의 경우 첫 번째 행에는 [math(x)]의 값을, 두 번째 행에는 [math(f'(x))]의 값([math(f'(x)>0)]일 경우 [math(+)], [math(f'(x)<0)]일 경우 [math(-)], [math(f'(x)=0)]일 경우 [math(0)]으로 표기), 세 번째 행에는 [math(f(x))]([math(f(x)<0)]일 경우 [math(+)], [math(f(x)>0)]일 경우 [math(-)], [math(f(x)=0)]일 경우 [math(0)]으로 표기), 마지막 네 번째 행에는 [math(f(x))]의 증가와 감소를 보통 화살표로 표시한다. 이때, [math(f'(x))] 또는 [math(f(x))]의 값이 [math(0)]이 되는 [math(x)]의 값을 나열하는 것이 보통이다. 단, 변곡점(함수의 오목, 볼록)을 구할 필요가 없을 때에는 [math(f''(x))]를 생략하여 나타낸다.

2. 예시

[math(f(x)=2x^3-9x^2+12x)]

위 함수를 예로 들어 보자.

[math(f'(x)=6x^2-18x+12=6(x-1)(x-2))]

이 함수의 도함수는 위와 같다. 이때 [math(f'(x)=0)]의 해는 [math(x=1)], [math(x=2)]이다.

[math(f''(x)=12x-18)]

또, [math(f(x))]의 이계도함수는 위와 같다.

그러므로 [math(f''(x)=0)]의 해는 [math(x=\dfrac 3 2)]이다.
[math(\begin{array}{c|c|c|c|c|c|c|c}
x & \cdots & 1 & \cdots & \dfrac 3 2 & \cdots & 2 & \cdots \\
\hline f'(x) & + & 0 & - & - & - & 0 & + \\
\hline f''(x) & - & - & - & 0 & + & + & + \\
\hline f(x) & \text {↱} & \begin{matrix} 5 \\ \text {극대} \end{matrix} & \text {⤵} & \begin{matrix} \dfrac 9 2 \\ \text {변곡점} \end{matrix} & \text {⤷} & \begin{matrix} 4 \\ \text {극소} \end{matrix} & \text {⤴}
\end{array})]

이 값들을 이용해 위와 같은 표를 그려 [math(f(x))]의 그래프의 개형을 알 수 있다.

같은 방법으로 소수 계량 함수 [math(\pi(x))], 이를 근사하기 위해 사용하는 함수인 [math(\dfrac{x}{\ln x})], [math(mathrm{li}(x))]의 예를 들면 아래와 같다.
[math(\begin{array} {c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
x & 0 & \cdots & 1 & \cdots & 2 & \cdots & 3 & \cdots & 10 & \cdots & 100 & \cdots & 1000 & \cdots & 10000 & \cdots \\
\hline \pi (x) & 0 & 0 & 0 & + & 1 & + & 2 & + & 4 & + & 25 & + & 168 & + & 1229 & + \\
\hline \dfrac {x} {\ln x} & \begin {matrix} \approx 0 \\ \text {특이점} \end {matrix} & \text {⤵} & \begin {matrix} \pm \infty \\
\text {특이점} \end {matrix} & \text {⤷} & 2.8853 \cdots & + & 2.7307 \cdots & + & 4.3429 \cdots & + & 21.7147 \cdots & + & 144.7648 \cdots & + & 1085.7362 \cdots & + \\
\hline \mathrm {li} (x) & \begin {matrix} \approx 0 \\ \text {특이점} \end {matrix} & \text {⤵} & \begin {matrix} - \infty \\
\text {특이점} \end {matrix} & \text {↱} & 1.0451 \cdots & + & 2.1635 \cdots & + & 6.1655 \cdots & + & 30.1261 \cdots & + & 177.6096 \cdots & + & 1246.1372 \cdots & +
\end {array})]
1 부근에서는 셋 다 다른 개형을 보이지만, [math(x)]의 값이 커질수록 [math(\dfrac{x}{\ln x})]와 [math(\mathrm{li}(x))]의 개형이 [math(\pi(x))]와 비슷해지는 것을 알 수 있다.[2]

3. 용도(고등학교 수학 내에서)

각 용도에 대하여 위 '예시' 의 함수를 대상으로 문제를 해결해 본다.

3.1. 함수의 증가, 감소, 극대와 극소 조사하기

미분을 배운 학생이라면 익히 알고 있을 것이다. [math(f(x))]의 도함수 [math(f'(x))]의 부호가 양일 때 증가하고, 음일 때 감소하고, [math(0)]일 때 극값을 가질 수 있다는 것을. 위 예시에는 [math(f'(x) \ge 0)]인 [math(x)]의 범위는 [math(x \le 1)], [math(x \ge 2)]이고, [math(f'(x) \le 0)]인 [math(x)]의 범위는 [math(1 \le x \le 2)]이다. 따라서 함수 [math(f(x))]는 [math(x \ge 1)], [math(x \le 2)]일 때 증가하고, [math(1 \le x \le 2)]일 때 감소한다는 사실을 알 수 있다.
잘 생각해 보면, 증가와 감소만을 조사할 때는 증감표 없이도 [math(f'(x)=0)]이 되는 [math(x)]와 [math(f'(x))]가 [math(0)]보다 큰지 작은지만을 이용하여 증가인지 감소인지 판단할 수 있다. 그러나 극값을 구할 때는 [math(f'(x)=0)]인 [math(x)]를 [math(a)]라 할 때, [math(a)]의 좌우에서 [math(f'(x))]의 부호가 변해야지만 극값이므로[3], 증감표를 그리는 것을 추천한다.

예시의 두번째 표에서처럼 그래프의 개형 그 자체를 분석하는 데 쓰이기도 한다.

3.2. [math(f(x))]의 그래프의 오목, 볼록, 변곡점 판단하기

여기서는 이계도함수를 이용해야 한다. 위 표에서는 [math(f(x)>0)], 즉 아래로 볼록인 [math(x)]의 범위는 [math(x>\frac 3 2)], [math(f(x)<0)], 즉 위로 볼록인 [math(x)]의 범위는 [math(x<\frac 3 2)]이다. [math(f(x)=0)]인 [math(x)]는 [math(x=\frac 3 2)]인데, [math(x=\frac 3 2)]의 좌우에서 [math(f(x))]의 부호가 음에서 양으로 변하므로 [math(x=\frac 3 2)]인 점, 즉 점[math(\left ( \frac 3 2, \frac 9 2 \right ))]는 [math(f(x))]의 변곡점이다.
이때 [math(f(x))]의 증가, 감소, 극대, 극소 판단과 마찬가지로 오목, 볼록만을 판단할 때는 [math(f(x))]가 [math(0)]보다 큰지, 작은지, [math(0)]인지만 확인하면 되므로 증감표가 필요 없다. 그러나 변곡점을 찾을 때는 [math(f(x)=0)]인 점의 좌우를 확인해야 하므로 증감표를 그리는 것을 추천한다. 또는 f''(x)가 연속인 경우에 좌극한의 값의 부호와 우극한의 값의 부호를 비교하면 보다 쉽게 변곡점인지 파악할 수 있다.
또는 변곡점이 도함수가 극값을 갖는 경우이므로 의심점을 찾은 후 이계도함수의 부호변화를 따져보면 손쉽게 변곡점을 찾을 수 있다. 부호변화는 그 지점의 좌극한과 우극한의 부호를 비교하는것으로 충분하다.

3.3. 함수의 그래프 그리기

증가, 감소, 오목, 볼록만을 판단하여 그래프를 그릴 수 있는 경우 증감표가 필요 없지만, 그 외에 극대, 극소, 변곡점을 찾아야 할 때는 증감표가 필요하다. 일반적으로 후자의 경우에 해당하므로, 함수의 그래프를 그릴 때 대부분 증감표를 활용한다.

3.3.1. 예시

함수 [math(f(x)=x/(x^{2}+1))]의 증감표 (a)를 작성하여 그래프의 개형 (b)를 그려보면 아래와 같다.

파일:namu_증감표_그래프예시.png

3.4. 그래프 그리기가 '혼란스러운' 경우

증감표 그리기가 원래 필요 없다고 여겨지는 증가, 감소, 오목, 볼록만을 판단하는 경우라도 함수가 복잡하거나(?)해서 그래프 그리기가 혼란스러울 때는 증감표를 그려서 개형을 추측해 보는 것을 추천한다.

이런 케이스에 속하는 함수로 감마 함수[4], 에어리 함수[5], 프레넬 적분 함수[6] 같은 것들이 있다.

3.5. 함수의 최대, 최솟값 찾기

일반적으로 연속함수의 최대, 최솟값을 구할 때는 주어진 범위의 경계점, [math(f(x))]의 극대, 극솟값 중 [math(f(x))]의 값이 가장 큰 것이 최대, 가장 작은 것이 최소이다. 예를 들어, 위 경우에서는 극대는 [math(f(1)=5)], 극소는 [math(f(2)=4)]이다. [math(0 \le x \le 3)]인 [math(x)]에 대해서는 [math(f(0)=0)], [math(f(3)=9)]이므로 [math(f(0))], [math(f(1))], [math(f(2))], [math(f(3))] 중 최댓값은 [math(f(3)=9)], 최솟값은 [math(f(0)=0)]이다.
최대, 최솟값을 구할 때는 극대, 극솟값을 먼저 구해야 하기 때문에 증감표가 필요하다고 생각할 수 있다. 그러나 함수가 어떤 구간에서 미분가능한 경우 해당 구간에서 극대, 극솟값은 [math(f'(x)=0)]이라는 성질을 가지고 있으므로[7][8] [math(f'(x)=0)]인 점을 모조리 찾아내고 주어진 범위의 경계점에서의 [math(f(x))]의 값을 조사하여 가장 큰 값이 최대, 가장 작은 값이 최소이다. 이렇게 하면 증감표가 필요 없다.

3.6. 방정식의 실근의 개수 구하기

예시로 든 함수 [math(f(x)=2x^3-9x^2+12x)]에 대하여 [math(f(x)=0)]의 근의 개수를 구해 보자. [math(f(x))]가 점 [math((1, 5))]에서 극대, 점 [math((2, 4))]에서 극소이므로, [math(x<1)]인 어떤 [math(x)]에 대해서 [math(f(x)=0)]인 [math(x)]가 1개 존재한다. 따라서 방정식의 실근의 개수는 1개이다. 함수 [math(f(x))]에 대하여 방정식 [math(f(x)=0)]의 실근의 개수를 구하려면 [math(f(x))]의 극대, 극솟값을 모두 조사한 후 그것을 바탕으로 [math(f(x)=0)]인 [math(x)]의 개수를 추론해야 한다. 이때 단지 [math(f'(x)=0)]인 [math(x)]만을 구하려다가는 큰코 다친다.(극대, 극소인지 아니면 [math(f'(x))]의 부호가 변하지 않아서 아무것도 아닌지 알 길이 없다) 따라서 증감표를 그리는 것을 추천한다.


[1] 아래의 두 번째 예시처럼 도함수, 이계도함수가 아닌 생판 다른 함수를 쓸 수도 있다. [2] 물론 제대로 된 성질을 분석하기에는 10000은 너무 작은 수이다. 최소 스큐스 수까지는 올라가야 한다. [3] [math(f'(x))]의 부호가 음에서 양으로 변할 때는 [math(f'(x))]가 증가하므로 [math(f(a)>0)], [math(f'(x))]의 부호가 양에서 음으로 변할 때는 [math(f'(x))]가 감소하므로 [math(f(a)<0)]이다. 이 성질을 이용하면 [math(f''(a))]를 이용하여 [math(f'(x))]가 증가하는지 감소하는지, 즉 [math(f(a))]가 극댓값인지 극솟값인지 알 수 있다. [4] 파일:external/upload.wikimedia.org/555px-Gamma_plot.svg.png
[math(x<0)] 영역에서 종유석과 석순이 반복된다고 생각하면 된다.
[5] 파일:에어리함수_그래프.png
[math(x<0)] 영역에서 진동한다.
[6] 파일:나무_프레넬적분_그래프_NEW.png
[math(|x|>0)] 영역에서 진동한다.
[7] 미분가능하지 않은 경우 그렇지 않을 수 있다. 예를 들어 [math(f(x)=|x|)]인 경우 [math(x=0)]에서 극소이지만 고등학교 수준에서는 미분가능하지 않으므로 [math(f'(x))]가 존재하지 않는다. [8] 실제로는 미분 가능하다. [math(dfrac{mathrm{d}}{mathrm{d}x}|x|=mathrm{sgn} ,x)], [math(dfrac{mathrm{d}^{2}}{mathrm{d}x^{2}} |x|= 2delta(x))]가 성립한다.