최근 수정 시각 : 2022-04-17 16:25:17

부정형



파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
문법 개념 否定形에 대한 내용은 부정문 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
{{{#!wiki style="letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례 ) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수 · 다변수 ( 동차 · 숨은 함수( 다가 함수 )) · 그래프 · 대칭 · 증감표 · 극값 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 좌표계 · 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙
극한 부정형 · 어림( 유효숫자 ) · 근방 · 수열의 극한 · 엡실론-델타 논법 · 수렴 ( 균등수렴 ) · 발산 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
· 급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람 ) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해 ) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미분 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 도함수 ( 편도함수 ) · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점 ) · 미분형식 · 미분방정식 ( 풀이 ) · [math(boldsymbolnabla)] · 라그랑주 승수법
정리 · 토픽 평균값 정리 ( 롤의 정리 ) · 스토크스 정리 ( 발산 정리 ) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 ) · 아다마르 변환
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제 ) · 치환적분 · 정적분 ( 예제 ) · 이상적분 · 중적분 ( 선적분 · 면적분 ) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 · 2학년의 꿈 · 리시 방법 · 야코비안
실해석 측도론 ( 측도 · 르베그 측도 ) · 유계( 콤팩트성 ) · 칸토어 집합 · 비탈리 집합
정리 · 토픽
복소해석 복소평면 · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 드 무아브르 공식 ) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 수치해석학 ( FEM ) · 미분기하학 · 해석기하학 · 해석적 정수론 ( 소수 정리 ) · 확률론 ( 중심극한정리 )
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 리만 가설미해결 · 카오스 이론미해결 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학 }}}}}}}}}}}}

1. 개요2. 종류
2.1. ∞/∞ 꼴
2.1.1. 부정형인 이유2.1.2. 극한값 구하는 법2.1.3. 예시
2.2. ∞−∞ 꼴
2.2.1. 부정형인 이유2.2.2. 극한값 구하는 법2.2.3. 예시
2.3. 0/0 꼴
2.3.1. 부정형인 이유2.3.2. 극한값 구하는 법2.3.3. 예시
2.4. 0×∞ 꼴
2.4.1. 부정형인 이유2.4.2. 극한값 구하는 법2.4.3. 예시
2.5. 1^∞ 꼴
2.5.1. 부정형인 이유2.5.2. 극한값 구하는 법2.5.3. 예시
2.6. ∞^0 꼴
2.6.1. 부정형인 이유2.6.2. 극한값 구하는 법2.6.3. 예시
2.7. 0^0 꼴
2.7.1. 부정형인 이유2.7.2. 극한값 구하는 법2.7.3. 예시
3. 부정형이 아닌 경우
3.1. 0^∞ 꼴

1. 개요

/ indeterminate form

부정형이란 주로 사칙연산이 한 가지 값으로 잘 정의되지 않는 것을 뜻한다. 극한에서 많이 사용하며, 반대말은 확정형(, determinate form)이다. 부정형인 식은 각 부분의 극한값은 알아도 막상 전체 식의 극한값을 바로 판정하기 어려워서 식을 확정형으로 적당히 변형하지 않으면 안 된다. 이 '부정형'은 명제의 ' 부정(否定)'과는 의미가 다르다.

이하 로피탈의 정리를 통해 부정형을 확정형으로 만든 것은 [math(\xlongequal{\textsf{l'H\^opital}})]로 표시한다.

2. 종류

[math({\infty}/{\infty})], [math(0/0)], [math(0\times\infty)], [math(\infty-\infty)], [math(1^{\infty})], [math(\infty^0)], [math(0^0)] 꼴 등이 있다. 형태는 똑같이 나오더라도 아래 예시와 같이 최종적인 극한값은 다르게 나온다는 이유에서 '부정형'으로 칭하는 것이다.

이와 같은 부정형이 나오면, 최고차항의 차수와 계수를 비교하거나 극한값이 결정되는 확정형으로 식을 적절히 변환해야 한다. 확정형에는 다음과 같은 것들이 있다. 단, [math(c)]는 상수이다.
  • [math(c)]
  • [math(\infty\times\infty=\infty)]
  • [math(\infty+\infty=\infty)]
  • [math(\pm\infty+c=\pm\infty)][1]
  • [math(\infty \times \pm c=\pm \infty)] ([math(c>0)], 복부호 동순)
  • [math(\dfrac{c}{\pm\infty}=0)]

2.1. ∞/∞ 꼴

2.1.1. 부정형인 이유

상수 [math(a>0)], [math(b>0)]에 대해 [math(f(x)=ax)], [math(g(x)=bx)]일 때

[math(\begin{aligned} \displaystyle\lim_{x\to\infty}f(x)&=\lim_{x\to\infty}g(x)=\infty\\\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}&=\dfrac ab\end{aligned})]

그러면 [math(a)]와 [math(b)]의 값에 따라서 [math(\infty/\infty)]의 값은 달라지므로, [math(\infty/\infty)]는 부정형이다.

2.1.2. 극한값 구하는 법

[math(\displaystyle\lim_{x\to\infty}f(x)=\lim_{x\to\infty}g(x)=\infty)]이고 [math(f(x))]를 최고차항이 [math(ax^n)]인 함수, [math(g(x))]를 최고차항이 [math(bx^m)]인 다항함수라 하면, 극한값은 다음과 같이 구한다. 단, [math(a)], [math(b)], [math(m)], [math(n)]은 0이 아닌 상수이다.

[math(\displaystyle \begin{aligned} \lim_{x\to\infty}\dfrac{f(x)}{g(x)}&=\lim_{x\to\infty}\dfrac{ax^n+\cdots}{bx^m+\cdots}\\&=\begin{cases}\begin{aligned}&\infty\quad &(m<n,\;ab>0)\\ -&\infty\quad &(m<n,\;ab<0)\\&0\quad &(m>n) \\&\dfrac{a}{b}\quad &(m=n)\end{aligned}\end{cases} \end{aligned})]

분모와 분자에 각각 역수를 취하면 [math(0/0)] 꼴이 된다. 또한, [math(0/0)]과 함께, 로피탈의 정리를 이용하여 확정형으로 변환할 수 있는 부정형이다.

또한, [math(\displaystyle\lim_{n\to\infty}\dfrac{a^n+c}{b^n+d}\;(b\neq0))] 꼴의 극한값은 다음과 같이 구한다.

[math(\displaystyle\lim_{n\to\infty}\dfrac{a^n+c}{b^n+d}=\begin{cases}\infty\quad&(a/b>1)\\1\quad&(a/b=1)\\0\quad&(-1<a/b<1)\\\textsf{\footnotesize진동}\quad&(a/b\leq-1)\end{cases})]

2.1.3. 예시

  • [math(\displaystyle\lim_{x\to\infty}\dfrac{x^2}{x}=\infty)]
  • [math(\displaystyle\lim_{x\to\infty}\dfrac{x^2}{-x}=-\infty)]
  • [math(\displaystyle\lim_{x\to\infty}\dfrac{-x}{-x^2}=\lim_{x\to\infty}\dfrac{x}{x^2}=0)]
  • [math(\displaystyle\lim_{x\to\infty}\dfrac{-6x^2-1}{2x^2+x+1}=\dfrac{-6}2=-3)]
  • [math(\displaystyle\lim_{x\to\infty}\dfrac{-6x^2-1}{2x^2+x+1}\xlongequal{\textsf{l'H\^opital}}\displaystyle\lim_{x\to\infty}\dfrac{-12x}{4x+1}\xlongequal{\textsf{l'H\^opital}}\lim_{x\to\infty}\dfrac{-12}4=-3)]

2.2. ∞−∞ 꼴

2.2.1. 부정형인 이유

위에서 정의한 [math(f(x))], [math(g(x))]에 대해

[math(\displaystyle \begin{aligned} \lim_{x\to\infty}\log f(x)&=\lim_{x\to\infty}\log g(x)=\infty \\\displaystyle\lim_{x\to\infty}\log\dfrac{f(x)}{g(x)}&=\lim_{x\to\infty}\{\log f(x)-\log g(x)\}=\log\dfrac{a}{b} \end{aligned})]

2.2.2. 극한값 구하는 법

[math(\displaystyle\lim_{x\to\infty}f(x)=\lim_{x\to\infty}g(x)=\infty)]일 때, 만약 [math(f(x)=x+1)], [math(g(x)=x-2)]와 같이 변수가 소거되는 경우라면 [math(x+1-(x-2)=3)]으로 쉽게 극한값을 구할 수 있다. 그렇지 않은 경우에는 다음과 같이 부분분수분해를 이용하여 [math(0/0)] 꼴로 변환한다.

[math(\dfrac{\cfrac1{g(x)}-\cfrac1{f(x)}}{\cfrac1{f(x)g(x)}})]

혹은 다음과 같이 합·차 공식을 이용하여 [math(\infty/\infty)] 꼴로 변환하는 것도 방법이다.

[math(f(x)-g(x)=\dfrac{\{f(x)\}^2-\{g(x)\}^2}{f(x)+g(x)})]

그러나 꼭 이렇게 하지 않아도, [math(f(x)=x^2+x)], [math(g(x)=x-1)]일 때 [math(\displaystyle\lim_{x\to\infty}\{f(x)-g(x)\}=\infty)]가 되듯이 별 어려움 없이 답이 나오는 경우도 많다.

2.2.3. 예시

2.3. 0/0 꼴

2.3.1. 부정형인 이유

위에서 정의한 [math(f(x),g(x))]에 대해

[math(\begin{aligned} \displaystyle\lim_{x\to\infty}\dfrac{1}{f(x)}&=\lim_{x\to\infty}\dfrac{1}{g(x)}=0\\\displaystyle\lim_{x\to\infty}\cfrac{\dfrac{1}{f(x)}}{\dfrac{1}{g(x)}}&=\lim_{x\to\infty}\dfrac{g(x)}{f(x)}=\dfrac ba\end{aligned})]

2.3.2. 극한값 구하는 법

분모와 분자를 약분하여 확정형으로 변환하면 되는 경우가 많다. 또한, [math({\infty}/{\infty})]와 함께, 로피탈의 정리를 이용하여 확정형으로 변환할 수 있는 부정형이다.

분모와 분자에 각각 역수를 취하면 [math({\infty}/{\infty})]가 된다.

2.3.3. 예시

  • [math(\displaystyle\lim_{x\to 1}\dfrac{x^2-1}{x-1}=\displaystyle\lim_{x\to 1}(x+1)=2)]
  • [math(\displaystyle\lim_{x\to 1}\dfrac{x^2-1}{x-1}\xlongequal{\textsf{l'H\^opital}}\displaystyle\lim_{x\to 1}\dfrac{2x}{1}=2)]

2.4. 0×∞ 꼴

2.4.1. 부정형인 이유

위에서 정의한 [math(f(x),g(x))]에 대해

[math(\begin{aligned} \displaystyle\lim_{x\to\infty}\dfrac{1}{f(x)}&=0\\\ \lim_{x\to\infty}g(x)&=\infty\\\displaystyle\lim_{x\to\infty}\dfrac{g(x)}{f(x)}&=ba\end{aligned})]

2.4.2. 극한값 구하는 법

[math(\displaystyle\lim_{x\to\infty}f(x)=\displaystyle\lim_{x\to\infty}g(x)=\infty)]이고 [math(f(x))]를 최고차항이 [math(ax^n)]인 함수, [math(g(x))]를 최고차항이 [math(bx^m)]인 다항함수일 때에 한하여, 극한값은 다음과 같이 구한다. 단, [math(a)], [math(b)], [math(m)], [math(n)]은 0이 아닌 상수이다.

[math(\displaystyle \begin{aligned} \lim_{x\to\infty}f(x)g(x)&=\lim_{x\to\infty}(ax^n+\cdots)(bx^m+\cdots)\\&=\begin{cases}\begin{aligned}&\infty\quad &(m+n>0,\;ab>0)\\-&\infty\quad &(m+n>0,\;ab<0)\\ &0\quad &(m+n<0)\\& ab\quad &(m+n=0)\end{aligned}\end{cases}\end{aligned})]

2.4.3. 예시

  • [math(\displaystyle\lim_{x\to\infty}x(x^2+x)=\infty)]
  • [math(\displaystyle\lim_{x\to\infty}-x(x^2+x)=-\infty)]
  • [math(\displaystyle\lim_{x\to\infty}\left( \pm x^2\cdot\dfrac1x\right)=\pm\infty)] ( 복부호 동순)
  • [math(\displaystyle\lim_{x\to\infty}\left( \pm x\cdot\dfrac1{x^2}\right)=0)]
  • [math(\displaystyle\lim_{x\to\infty}2x^2\cdot\dfrac3{x^2}=6)]

2.5. 1^∞ 꼴

2.5.1. 부정형인 이유

[math(1^\infty=(e^{\ln{1}})^{\infty}=e^{\ln{1}\times \infty}=e^{0\times \infty})]

[math(0\times \infty)]는 부정형이므로 [math(1^{\infty})]도 부정형이다.

2.5.2. 극한값 구하는 법

2.5.3. 예시

  • [math(\displaystyle\lim_{x\to 0+}(1+x)^{1/x}=\displaystyle\lim_{x\to 0+}\sqrt[x]{1+x}=)] [math({e})]

2.6. ∞^0 꼴

2.6.1. 부정형인 이유

[math(\infty^{0}=\infty^{\ln{1}}=1^{\ln{\infty}}=1^{\infty})]

[math(1^{\infty})] 꼴이 부정형이므로 [math(\infty^0)] 꼴도 부정형이다.

2.6.2. 극한값 구하는 법

2.6.3. 예시

  • [math(\displaystyle\lim_{x\to\infty}(1+x)^{1/x}=\displaystyle\lim_{x\to\infty}\sqrt[x]{1+x}=1)]

2.7. 0^0 꼴

2.7.1. 부정형인 이유

파일:상세 내용 아이콘.svg   자세한 내용은 0의 0제곱 문서
번 문단을
부분을
참고하십시오.

2.7.2. 극한값 구하는 법

2.7.3. 예시

  • [math(\displaystyle\lim_{n\to\infty}\left(\dfrac{n!}{n^n}\right)^{\!1/n}\!=\dfrac1e)]

3. 부정형이 아닌 경우

얼핏 부정형으로 착각하기 쉬운 경우를 서술한다.

3.1. 0^∞ 꼴

[math(\displaystyle\lim_{x\to c}f(x)=0)], [math(\displaystyle\lim_{x\to c}g(x)=\infty)]일 때, [math(\displaystyle\lim_{x\to c}f(x)^{g(x)})]을 고려하자. 극한의 정의에 따라 적절한 [math(c)]의 근방에서 [math(-0.5<f(x)<0.5)]이므로 해당 근방에서

[math(\displaystyle\dfrac{-1}{2^{g(x)}}<f(x)^{g(x)}<\dfrac{1}{2^{g(x)}})]

이다. 여기에 조임 정리를 쓰면 값이 0으로 결정되므로 부정형이 아니다. 요컨대 [math(0^{\infty}=0)]이며, 1을 아무리 제곱해도 1인데도 [math(1^{\infty})]은 1로 결정되지 않는 것과는 사뭇 다르다.
[1] 이는 다비트 힐베르트 방을 옮기는 식으로 손님을 무한히 수용 가능한 호텔에 비유한 바 있다.