1. 미적분학에서의 야코비안
1.1. 개요
카를 구스타프 야코프 야코비가 고안한 좌표계 변환법.다중적분(Multiple integral)(Area, Volume, Surface integral)을 할 때, 미분소 [math({\rm d}A)], [math({\rm d}V)], [math({\rm d}S)] 등을 같은 차원의 좌표계로 변환하는 데에 쓰는 행렬식이다.
예를 들어, 면적분의 좌표계를 바꾸기 위해 [math((x,\,y))]로 표현되는 좌표를 [math((r,\,\theta))]로 바꿔줄 때 야코비안 [math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \begin{vmatrix} \begin{aligned} \cos \theta \\ \sin \theta \end{aligned} & \begin{aligned} -r\sin \theta \\ r\cos \theta \end{aligned} \end{vmatrix} = r)]을 이용해
[math({\rm d}A = {\rm d}x{\rm d}y = |J| {\rm d}r{\rm d}\theta = r{\rm d}r{\rm d}\theta)] |
덧붙여 야코비안은 행렬식 안에 편미분이 들어가기 때문에 식 자체의 크기가 꽤 크다. 이를 간단하게 표기하기 위해서, 다음과 같은 표기법들을 사용하기도 한다.
[math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \left| \dfrac{\partial (x,\,y)}{\partial (r,\,\theta)}\right| )] |
[math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \begin{pmatrix} x_r & x_{\theta} \\ y_r & y_{\theta} \end{pmatrix} )] |
일반적으로는 [math(n)]개의 변수를 마찬가지로 [math(n)]개의 변수로 치환하기 때문에 [math(n)]차 정사각행렬의 행렬식의 형태를 띄게 되는데, 미분기하학 등의 분야에서는 변수를 줄여서 매개화를 시키는 경우에 한해서 정사각행렬이 아닌 야코비 행렬만을 따지기도 한다. 예를 들면 다음과 같은 경우가 있다.
사상 [math({\bf x}: D(\subseteq\mathbb R^2)\to\mathbb R^3)]가 다음과 같이 정의되어 있다고 하자. [math({\bf x}(u,\,v)=(x(u,\,v),\,y(u,\,v),\,z(u,\,v)))] 즉 벡터 [math(\bf x)]를 [math({\bf x}=(x,\,y,\,z))]라고 둘 때, [math((x,\,y,\,z))]를 2개의 매개변수 [math((u,\,v))]로 매개화를 시킨 상황이다. 이 경우, 이 사상은 벡터장에 의해 정의된 3차원상의 평면으로 나타나며, 이 사상의 야코비 행렬은 다음과 같이 표기한다. |
[math(J=\dfrac{\partial (x,\,y,\,z)}{\partial (u,\,v)})] |
이 행렬은 [math(J = \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial u} \\ \dfrac{\partial y}{\partial u} \\ \dfrac{\partial z}{\partial u} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial v} \\ \dfrac{\partial z}{\partial v} \end{aligned} \end{pmatrix})]의 [math(3\times2)] 행렬이 되는데, 당연히 행렬식을 구할 수는 없으니 의미가 없어보이지만, 이 행렬의 전치행렬에 3차원 좌표계의 기저벡터[math((U_1, U_2, U_3))]를 추가하여 행렬식을 구성. 즉 벡터로 변환하게 되면 다음과 같다.
[math(J^{T *} = \begin{vmatrix} \begin{aligned} U_1 \\ \dfrac{\partial x}{\partial u} \\ \dfrac{\partial x}{\partial v} \end{aligned} & \begin{aligned} U_2 \\ \dfrac{\partial y}{\partial u} \\ \dfrac{\partial y}{\partial v} \end{aligned} & \begin{aligned} U_3 \\ \dfrac{\partial z}{\partial u} \\ \dfrac{\partial z}{\partial v} \end{aligned} \end{vmatrix}=\left(\dfrac{\partial y}{\partial u}\dfrac{\partial z}{\partial v}-\dfrac{\partial z}{\partial u}\dfrac{\partial y}{\partial v},\,\dfrac{\partial z}{\partial u}\dfrac{\partial x}{\partial v}-\dfrac{\partial x}{\partial u}\dfrac{\partial z}{\partial v},\,\dfrac{\partial x}{\partial u}\dfrac{\partial y}{\partial v}-\dfrac{\partial y}{\partial u}\dfrac{\partial x}{\partial v}\right))]
그런데 이 벡터는 [math(\bf x)]를 [math(u)]와 [math(v)]로 편미분한 두 미분벡터 [math({\bf x}_u,\,{\bf x}_v)]의 외적과 정확히 일치한다는 것이 알려져 있다. 이런 식으로 야코비안은 반드시 정사각행렬이 아니더라도 다양한 분야에서 사용된다.
1.2. 유도
벡터를 이용한 면적의 넓이 공식 및 다변수 함수의 전미분으로부터 유도할 수 있다. 간단하게 2차원 직교 좌표계의 경우를 보자.[math({\rm d}x)], [math({\rm d}y)]는 서로 독립이며 각각 [math(x)]축, [math(y)]축에 평행한 미소(smallness 또는 infinitesimals) 길이므로 단위 벡터 [math({\bf e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix})], [math({\bf e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix})]를 이용하여 나타내면 각각
[math(\begin{aligned} {\rm d}x {\bf e_1} &= {\bf dx} = \begin{pmatrix} {\rm d}x \\ 0 \end{pmatrix} \\ {\rm d}y {\bf e_2} &= {\bf dy} = \begin{pmatrix} 0 \\ {\rm d}y \end{pmatrix} \end{aligned})] |
[math(\begin{Vmatrix} {\bf dx} & {\bf dy} \end{Vmatrix} = \begin{Vmatrix} {\rm d}x & 0 \\ 0 & {\rm d}y \end{Vmatrix} = | {\rm d}x{\rm d}y |)] |
한편 [math(x,\,y)]가 극좌표 매개변수 [math(r,\,\theta)]로 나타낼 수 있는 함수 [math(x(r,\,\theta))], [math(y(r,\, \theta))]라고 할 때 각각의 전미분 [math({\rm d}x,\,{\rm d}y)]는 다음과 같이 된다.
[math(\begin{aligned} {\rm d}x &= \frac{\partial x}{\partial r} {\rm d}r + \frac{\partial x}{\partial \theta} {\rm d}\theta \\ {\rm d}y &= \frac{\partial y}{\partial r} {\rm d}r + \frac{\partial y}{\partial \theta} {\rm d}\theta \end{aligned})] |
[math(\mathrm dr)], [math(\mathrm d\theta)]도 서로 독립이며 [math(\mathrm dx)], [math(\mathrm dy)]처럼 벡터로 나타낼 수 있으므로 위 전미분 식의 미소 길이를 모두 벡터로 대체한다.
[math(\begin{aligned} {\bf dx} &= \dfrac{\partial x}{\partial r} {\bf dr} + \dfrac{\partial x}{\partial \theta} {\bf d}\boldsymbol\theta = \dfrac{\partial x}{\partial r} \begin{pmatrix} {\rm d}r \\ 0 \end{pmatrix} + \dfrac{\partial x}{\partial \theta} \begin{pmatrix} 0 \\ {\rm d}\theta \end{pmatrix} = \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r}{\rm d}r \\ \dfrac{\partial x}{\partial \theta}{\rm d}\theta \end{aligned} \end{pmatrix} \\ {\bf dy} &= \dfrac{\partial y}{\partial r} {\bf dr} + \dfrac{\partial y}{\partial \theta} {\bf d}\boldsymbol\theta = \dfrac{\partial y}{\partial r} \begin{pmatrix}{\rm d}r \\ 0 \end{pmatrix} + \dfrac{\partial y}{\partial \theta} \begin{pmatrix} 0 \\ {\rm d}\theta \end{pmatrix} = \begin{pmatrix} \begin{aligned} \dfrac{\partial y}{\partial r}{\rm d}r \\ \dfrac{\partial y}{\partial \theta}{\rm d}\theta \end{aligned} \end{pmatrix} \end{aligned})] |
[math(\begin{Vmatrix} {\bf dx} & {\bf dy} \end{Vmatrix} = \begin{Vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r}{\rm d}r \\ \dfrac{\partial x}{\partial \theta}{\rm d}\theta \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r}{\rm d}r \\ \dfrac{\partial y}{\partial \theta}{\rm d}\theta \end{aligned} \end{Vmatrix} = \begin{Vmatrix} \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial x}{\partial \theta} \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \end{Vmatrix})] |
[math(\begin{aligned} \begin{Vmatrix} \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial x}{\partial \theta} \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \end{Vmatrix} &= \begin{Vmatrix} \left( \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial x}{\partial \theta} \end{aligned} & \begin{aligned} \dfrac{\partial y}{\partial r} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \right)^\mathrm T \end{Vmatrix} = \begin{Vmatrix} \begin{pmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial\theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{pmatrix} \begin{pmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{pmatrix} \end{Vmatrix} \\ &= \begin{Vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial\theta} \\ \dfrac{\partial y}{\partial\theta} \end{aligned} \end{Vmatrix} \begin{Vmatrix} {\rm d}r & 0 \\ 0 & {\rm d}\theta \end{Vmatrix} = |J| | {\rm d}r{\rm d}\theta | \end{aligned})] |
일반적으로 [math({\rm d}x{\rm d}y)], [math({\rm d}r{\rm d}\theta)]가 양의 값이 되도록 좌표축을 잡으므로
[math({\rm d}x{\rm d}y = |J|{\rm d}r{\rm d}\theta)] |
[math(3)]차원 공간 좌표계를 이용해서도 같은 방법으로 유도할 수 있다. 더 힘들 뿐이다.
1.3. 예시
-
직교 좌표계 → 극좌표계로의 변환
양수 [math(a)], [math(b)]에 대하여 [math(J = \begin{vmatrix} \begin{aligned} \dfrac{\partial x}{\partial r} \\ \dfrac{\partial y}{\partial r} \end{aligned} & \begin{aligned} \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial \theta} \end{aligned} \end{vmatrix} = \begin{vmatrix} x_r & x_{\theta} \\ y_r & y_{\theta} \end{vmatrix} )] 이므로
[math(\begin{cases} \begin{aligned} x &= ar \cos \theta \\ y &= br \sin \theta \end{aligned} \end{cases})]에서
[math(|J| = \begin{Vmatrix} a \cos \theta & -ar \sin \theta \\ b \sin \theta & br \cos \theta \end{Vmatrix} = ab|r|)]
[math(r)]이 음수가 안 되도록 범위를 잡으면 [math(|J| = abr)]
[math(a \ne b)] 일 때 타원이며 [math(a=b)]일 때 원. 두 경우 모두 [math(r)]의 범위가 [math(0 \le r \le 1)]로 주어지는 특징이 있다. 원에 한해서는 그냥 [math(a=b=1)]로 하고 반지름 [math(R)]에 대해 [math(r)]의 범위를 [math(0 \le r \le R)]로 잡아도 된다.
-
공간 좌표계 → 원통 좌표계로의 변환
[math(\begin{cases} \begin{aligned} x &= r \cos \theta \\ y &= r \sin \theta \\ z &= \zeta \end{aligned} \end{cases})]에서
[math(|J| = \begin{Vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{Vmatrix} = |r|)]
[math(xy)]평면에 평행한 단면이 타원일 경우 역시 위의 값에 [math(ab)]를 곱한다. [math(r)]이 음수가 안 되도록 범위를 잡으면 절댓값 기호를 그냥 벗길 수 있다.
-
공간 좌표계 → 구좌표계로의 변환
[math(\begin{cases} \begin{aligned} x &= r \sin \theta \cos \phi \\ y &= r \sin \theta \sin \phi \\ z &= r \cos \theta \end{aligned} \end{cases})]에서
[math(|J| = \begin{Vmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{Vmatrix} = {\left| r^2 \sin \theta \right|} = r^2 | \sin \theta| )]
[math(\sin \theta)]값이 음수가 안 되도록 범위를 잡으면[2] 절댓값 기호를 그냥 벗길 수 있다.
-
타원이나 마름모꼴에서
[math(\begin{cases} \begin{aligned} u &= x+y \\ v &= x-y \end{aligned} \end{cases} \Leftrightarrow \begin{cases} \begin{aligned} x &= \dfrac{u+v}2 \\ y &= \dfrac{u-v}2 \end{aligned} \end{cases})]에서
[math(|J| = \begin{Vmatrix} \begin{aligned} \dfrac 12 \\ \dfrac 12 \end{aligned} & \begin{aligned} \dfrac 12 \\ -\dfrac 12 \end{aligned} \end{Vmatrix} = \left| -\dfrac 12 \right| = \dfrac 12)]
또는
[math(\begin{cases} \begin{aligned} u &= 2x-y \\ v &= y \end{aligned} \end{cases} \Leftrightarrow \begin{cases} \begin{aligned} x &= \dfrac{u+v}2 \\ y &= v \end{aligned} \end{cases})]에서
[math(|J| = \begin{Vmatrix} \dfrac 12 & \dfrac 12 \\ \\ 0 & 1 \end{Vmatrix} = \dfrac 12)]
2. 선형대수학에서의 야코비안
선형대수학 Linear Algebra |
|||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#006ab8> 기본 대상 | 일차함수 · 벡터 · 행렬 · 선형 변환 | |
대수적 구조 | 가군(모듈) · 벡터 공간 · 내적 공간 | ||
선형 연산자 | <colbgcolor=#006ab8> 기본 개념 | 연립방정식 · 행렬곱 · 단위행렬 · 역행렬과 크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식( 라플라스 전개) · 주대각합 | |
선형 시스템 | 기본행연산과 기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법 | ||
주요 정리 | 선형대수학의 기본정리 · 차원 정리 · 가역행렬의 기본정리 · 스펙트럼 정리 | ||
기타 | 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환 | ||
벡터공간의 분해 | 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화( 대각행렬) · 삼각화 · 조르당 분해 | ||
벡터의 연산 | 내적 · 외적( 신발끈 공식) · 다중선형형식 · [math(boldsymbolnabla)] · 크로네커 델타 | ||
내적공간 | 그람-슈미트 과정 · 수반 연산자( 에르미트 내적) | ||
다중선형대수 | 텐서 · 텐서곱 · 레비치비타 기호 | }}}}}}}}} |
선형대수학이나 공업수학의 상 미분방정식 파트의 연립상미분방정식(system of ODE)에서 등장한다. non-homogeneous ODE의 critical point 근처에서의 거동을 알아보기 위해 non--homogeneous항을 선형성있게 행렬로 근사한 후 값을 대입하여 solution curve의 개형을 알아본다.
n원일차연립방정식에서는 n x n의 야코비 행렬이 쓰인다.
만약 critical point 근처라면, x'(t)와 y'(t)는 다음과 같은 합으로 나타낼 수 있다.
()
여기서, critical point 근처에서는 x'(t)≈0, y'(t)≈0이므로 oo항을 날릴 수 있다.
(미완성)