최근 수정 시각 : 2022-05-08 18:29:50

임계점

1. 수학2. 물리학3. 기타

1. 수학

해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
{{{#!wiki style="letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례 ) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수 · 다변수 ( 동차 · 숨은 함수( 다가 함수 )) · 그래프 · 대칭 · 증감표 · 극값 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 좌표계 · 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙
극한 부정형 · 어림( 유효숫자 ) · 근방 · 수열의 극한 · 엡실론-델타 논법 · 수렴 ( 균등수렴 ) · 발산 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
· 급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람 ) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해 ) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미분 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 도함수 ( 편도함수 ) · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점 ) · 미분형식 · 미분방정식 ( 풀이 ) · [math(boldsymbolnabla)] · 라그랑주 승수법
정리 · 토픽 평균값 정리 ( 롤의 정리 ) · 스토크스 정리 ( 발산 정리 ) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 ) · 아다마르 변환
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제 ) · 치환적분 · 정적분 ( 예제 ) · 이상적분 · 중적분 ( 선적분 · 면적분 ) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 · 2학년의 꿈 · 리시 방법 · 야코비안
실해석 측도론 ( 측도 · 르베그 측도 ) · 유계( 콤팩트성 ) · 칸토어 집합 · 비탈리 집합
정리 · 토픽
복소해석 복소평면 · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 드 무아브르 공식 ) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 수치해석학 ( FEM ) · 미분기하학 · 해석기하학 · 해석적 정수론 ( 소수 정리 ) · 확률론 ( 중심극한정리 )
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 리만 가설미해결 · 카오스 이론미해결 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학 }}}}}}}}}}}}


, critical point
정류점(定流點), 정상점(定常點)이라고 부르기도 한다.

함수의 미분계수가 0이거나 존재하지 않는 점을 함수의 임계점이라고 한다.

함수 극값을 구하기 위해서 몇 가지 극점 후보[1]를 생각해야 하는데, 그 대부분은 임계점으로 구할 수 있다.

일반적으로, n차 다항함수는 많아야 n-1개의 임계점을 갖게 된다. 2차 함수는 1개, 3차 함수는 2개, 4차 함수는 3개... 같은 식. 여기서 '많아야'라는 말에 주목을 해야 하는데, 이차함수는 꼭짓점이라 부르는 1개의 임계점을 반드시 갖지만, 3차 이상의 함수는 n-2개 이하의 임계점을 가질 수도 있기 때문이다. 미분가능한 함수의 임계점의 개수는 그 도함수의 실근의 개수로 결정된다. m중근은 하나로 센다.

주의해야 할 것은 임계점이 극점 후보라는 것이지, 극값을 반드시 가진다는 뜻이 아니다.[2] 따라서 임계점을 구한 후에도 극값의 정의에 맞는지를 두고 더 생각해봐야 한다.

2. 물리학

파일:external/www.che.tohoku.ac.jp/souzu-E.gif

물리학에서는 기상(Gas)과 액상(Liquid)의 구분이 사라지는 압력과 온도를 임계점이라고 한다. 임계점 밖에서 물질은 기체라고 할 수도 액체라고 할 수도 없는데, 이를 ' 초임계유체'라고 한다.

상전이 문서 참조

3. 기타

서브컬처에서는 사실상 마지노선과 동의어로 쓰고 있다. "임계점 돌파"라는 말이 적잖게 쓰이는 편.


[1] 대표적으로 그래프의 기울기가 바뀌는 지점인 변곡점. [2] 아주 간단한 반례로 f(x)=x³을 들 수 있다. 도함수인 f'(x)=3x²이 0이 되는 지점에서 그래프가 x축에 접하므로 부호가 양에서 음으로 바뀌지 않는다. 따라서 f(x)는 그 '점'에서 증가를 잠시 멈췄다가 이내 다시 증가한다. 이때는 f(x)가 극값을 가지지 않으며, x=0은 임계점이지만 극점은 아니다.