최근 수정 시각 : 2022-09-21 23:30:46

무한대

해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px; letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수( 변분법) · 다변수 ( 동차 · 숨은 함수( 다가 함수)) · 그래프 · 대칭 · 증감표 · 극값 · 영점 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙 · 스펙트럼 정리
극한 엡실론-델타 논법( 수열의 극한) · 수렴 ( 균등수렴) · 발산 · 부정형 · 어림( 유효숫자 · 오차 · 불확도) · 근방 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미적분 미분 도함수 ( 편도함수) · 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점) · 미분형식 · 미분방정식 ( 풀이) · [math(boldsymbolnabla)] · 라그랑주 승수법
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 정적분 ( 예제) · 이상적분 · 중적분 ( 선적분 · 면적분 · 야코비안) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 ( 선적분의 기본정리) · 평균값 정리 ( 롤의 정리) · 스토크스 정리 ( 발산 정리 · 그린 정리) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 · 아다마르 변환) · 2학년의 꿈 · 리시 방법

해석
실수 · 좌표계 · 측도론 ( 측도 · 르베그 측도) · 실직선 · 유계( 콤팩트성) · 칸토어 집합 · 비탈리 집합
정리 · 토픽
복소
해석
복소수( 복소평면) · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 해석기하학 · 미분기하학 · 해석적 정수론 ( 소수 정리 · 리만 가설미해결) · 벡터 미적분학( 야코비 공식) · 확률론 ( 확률변수 · 중심극한정리) · 수치해석학 ( 유한요소해석 · 전산유체역학)
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 카오스 이론 · 오일러 방정식 · 퍼지 논리 · 거리함수 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학 }}}}}}}}}

1. 개요2. 기호 [math(\infty)]3. (실)수열의 무한대
3.1. 오해
4. 집합론의 무한대
4.1. 무한 공리
5. 기타 여러 가지 무한대6. 창작물에 나오는 무한대7. 관련 문서

1. 개요

· infinity[1]
Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.
아무도 칸토어가 우릴 위해 준비해 준 이 천국에서 우리를 내쫓을 수 없을 것이다.
1925년, 독일 뮌스터에서 열린 베스트팔렌 수학학회에서 다비드 힐베르트가 한 연설.

현대수학에서 무한대는 무한히 커지는 상태, 무한집합의 원소의 수 등의 무한한 대상을 나타내는 여러 가지 다른 개념을 의미한다. 수학에서 [math(infty)]로 표기한다. 독일어로는 Unendlichkeit.

무한대라는 개념은 극한과 함께 고대부터 사용했던 개념이다. 정의를 나중에 내리면서 무한대의 개념을 엄밀하게 재정립하자니 고대부터 이어오던 관용적으로 사용하던 것을 표현하기 힘들고 기존에 사용하던 걸 다 포함시키자니, 정의를 안내려놓고 사용하던 것들이라 뒤죽박죽의 모순투성이인 단어.

그래서 의미가 재정의 되는 것이 아니라, 새로운 의미가 계속 붙여져서 '여러 가지 다른 개념'을 가진 단어가 되었다.

2. 기호 [math(\infty)]

기호 [math(\infty)]는 1655년에 처음 사용되었다. [math(\infty)]는 1000을 뜻하는 고대 로마 숫자인 ↀ에서 유래한 것으로 보인다. 흔히 [math(\infty)] 기호를 뫼비우스의 띠에 비유하지만 뫼비우스의 띠는 더 늦은 1858년에 발견되었다. 참고로 [math(\infty)]모양을 기하학적으로는 렘니스케이트(Lemniscate)라고 한다.

일부 프로그래밍 언어의 수학 라이브러리에서는 모양이 비슷한 oo라고 표현하기도 한다. 또한 WolframAlpha에 oo를 집어넣으면 [math(\infty)]로 변환된다.

비주얼 스튜디오의 경우 무한대 기호를 심볼로써 사용한다.

3. (실)수열의 무한대

3.1. 오해

실수에서 무한대란 개념이 교과서에 처음 등장하는 것이 고교과정 수학의 수학2(15개정) 1단원 함수의 극한이다. 그런데 이 부분이 오해하기 워낙 쉬운 단원이다 보니,[2] 무한대에 대한 온갖 오해를 갖게 된다. 배우기 이전에도 무한대에 대한 자연스럽지만 엄밀하지는 못한 생각을 막연히 갖고 있기도 했을 것이고.

고교 과정 수학의 수열에서, "[math(n)]이 무한히 커질 때, ...", "양/음의 무한대로 발산한다"는 표현 등이 큰 오해를 일으키고 있다.[3] 무한대가 쓰이는, 이런 용례에서 흔히 무한대가 실재하는 것, 혹은 동적 개념으로 이해하지만 전혀 그렇지 않다. 그렇다고 오해라고만 할 수는 없는데, 무한히 커진다는 표현이나, 무한대로의 발산이 모호한 개념은 아니고, 명확하게 정의되며 잘못된 표현이라고도 할 수는 없다.

다만, 그 정의가 고교 수준에서 소개할 것은 아니고, 한 눈에 직관적 정의와 부합함을 알기는 어렵다.[4][5] 해석학을 엄밀화하려는 시도가 무한대, 무한소가 실재한다는 사고 때문에 일어났고[6][7], 해석학은 이 둘을 몰아내는 방향으로 엄밀화되었다.[8]

이공계의 언어를 한국말로 번역하자면, 일단 사전에서의 무한대의 정의는 어떤 실수나 자연수보다도 더 큰 상태를 뜻하며 이것이 "현재" 대중적으로 표준적인 정의. 그리고 우리가 고등학생 때 배웠던 무한대로 커진다던가, 무한대로 발산한다고 오해한 의미는 미적분이 막 나왔던 뉴턴, 라이프니츠 시절에 대중적이었던 의미[9]로 미적분을 가르치기 위해서 가르친 것이고 이것이 오해를 불러일으킨다.

무한대는 확장된 실수 혹은 리만 구의 원소로 간주할 수 있다. 초실수나 초현실수도 무한대를 다루기 위한 체계인데, 쓰이는 일은 별로 없다고 보면 된다. 실수는 물론 아니다.

비표준 해석학 등 무한대를 직관에 더 가깝게 다루려는 결과물들이 있지만, 이를 수학적으로 엄밀히 정의하는 것은 표준적인 극한의 정의보다도 훨씬 어려운 일이다.

현재에도 무한급수의 계산이 나오면 피 토하는 수학자 및 물리학자들이 많다. 특히 물리학에선 자연에 무한한 게 있을 리 없으니 발산한다면 골치아파진다. 엘러건트 유니버스 저자 가라사대, 무한대는 네 이론이 잘못됐다고 신이 내리는 회초리라고. 다만 무한대는 자연에 실존할수도 있다. 대표적으로 블랙홀의 특이점 같은 경우는 밀도가 무한대라고 현재까지 알려져있다.

또한 유한한 속도로 한없이 커지거나 작아지는 것과 무한히 크고 작은 건 엄연히 다르다. 전자는 이론상으로 충분한 시간만 있다면 유한한 그 어떤 경지라도 도달하거나 초월할 수 있지만 어쨌든 유한한 속도라서 무한대나 무한소에 도달할 수 없다. 하지만 현실에서는 너무 크거나 작은 수는 표현을 못하기 때문에 부동소수점이 존재한다. 무한히 크고 작은 것은 그 자체로 무한대나 무한소에 해당한다. 이게 만약 한번에 무한해지는 게 아니라 일정 횟수만큼 시도해야 혹은 확률적으로 무한해진다면 무한이 아닐 때의 경우는 유한이다. 또한 후자는 확률이라서 많이 시도해도 안될 수도 있고 1회만에 될 수도 있다.

4. 집합론의 무한대

무한집합의 원소의 수. 그럼 무한집합이 뭐냐는 질문에 도달하는데 어떤 집합에 대해 농도가 같은 진부분집합이 존재하면 무한집합이라 한다. 물론 개수를 하나하나 센다는 느낌으로 접근하는 것은 아니고, 아주 간단히 말하면 함수의 일대일을 통하여 무한집합들의 크기를 비교할 때의 서열을 구분한 것이다. 쉽게 말해 두 대상을 비교하기 위해 각각 번호표를 주어 끝번호의 숫자를 알아내는것이 아닌, 두 집단을 하나씩 짝을 지어 서로 남김없이 짝을 맺을 수 있는가를 알아보는 것이다.

약간 더 자세히 말하자면 이 개념은 수학자 게오르그 칸토어(Georg Cantor, 1845-1918)의 집합론에서 출발된 것인데, 그는 자연수, 정수, 유리수의 집합은 서로 일대일대응을 줄 수 있지만, 실수집합의 경우는 자연수에서 실수로 가는 전사대응을 줄 수가 없는, 즉 '실수 집합의 크기가 더 큰' 것을 증명하였다. 최근 EBS 다큐프라임 넘버스 2부 천국의 사다리 - [math(\infty)] 편에서도 자세한 설명을 볼 수 있다. 이 기준을 통해 무한집합들에 대해 서열을 매긴 것을 기수(cardinality) 혹은 초한기수(transfinite cardinality)라 부른다. 이 초한기수의 서열은 가장 작은 자연수의 기수인 알레프-0부터 시작해 끝도 없이 이어지므로, 무한히 많은 종류의 무한대가 존재한다는 사실을 알 수 있다. 더욱 자세한 것은 초한기수 문서 참고.

만약 무한대에 어떠한 수를 더하면 어떻게 될까? 무한대는 그래봤자 무한대 그대로다. 다음을 보면 안다.

독일의 수학가 다비드 힐베르트는 집합론의 무한대(엄밀하게는 자연수의 초한기수이다.)가 갖고 있는 기묘한 성질을 잘 보여주는 하나의 예제를 만들었다. ' 힐베르트의 호텔'이라고 불리는 이 유명한 예제는 힐베르트가 종업원으로 일하고 있는 가상의 호텔에서 시작된다.

4.1. 무한 공리

수학 논리학의 일부임을 보이기 위해서는 수학의 기초적인 공리들이 논리학의 공리이거나 그것들로부터 도출된 명제여야 한다. 하지만 현대 수학의 기본 공리계인 ZFC 공리계에서 적어도 두 개의 공리( 선택 공리, 무한 공리)는 논리적 명제가 아니다. 예를 들어 수학자들이 무한공리("무한집합이 존재한다")를 받아들이는 이유는 우리가 기본적으로 수많은 무한집합(자연수의 집합, 실수의 집합 등등)들이 존재한다는 것을 알고, 그 존재를 보장하기 위해서이다. 즉 무한공리는 이에 대한 개념과 그 내용을 받아들이는 것이지, 그 논리적 형식을 받아들이는 것이 아니다. 이러한 이유로 수학은 논리학에 속하지 않는다.

5. 기타 여러 가지 무한대

보다 고급 해석학에서는 무한대를 수 체계에 편입시키기도 한다. 확장된 실수(expanded real number) 및 확장된 복소수(expanded complex number) 체계가 대표적. 여기서는 제한적으로 무한대에 대한 일부 연산이 허용되긴 하지만, 여기에서의 무한대는 실수가 아니다. 다루는 대상의 어떤 값이 발산할 수 있는 상황에서도 전개하는 논리가 일관성 있고 간결하게 서술되기 위해 사용되는 도구인데[10], 주로 측도론에서 이를 볼 수 있다. 측도론에서 다루는 측도가능한 (잴 수 있는; measurable) 부분집합들 중에는 무한히 넓은 면적을 가진 부분집합 또한 존재하고 이들 역시 빼먹지 않고 다뤄야 하는데, 만약 확장된 실수를 쓰지 않고 원래 실수만 가지고 측도론의 여러 성질들 및 정리들을 서술하려고 하면 유한한 면적을 가지는 상황과 무한한 면적을 가지는 상황 둘 혹은 그 이상으로 쪼개서 해당 내용을 서술해야 할 것이다. 이는 끔찍할 정도로 귀찮은 일인데, 확장된 실수를 도입하여 서술하면 굳이 그런 분할을 쓰지 않더라도 설명을 깔끔하게 할 수 있게 된다.[11] 다시 한 번, 여기서 사용되는 무한대가 진짜 수는 절대 아니고 단지 편의 상 도입된 도구임을 명심하자. 물론 비표준 해석학과도 별 상관은 없다. 하지만 어차피 측도론을 본격적으로 공부하는 시점에서 원래 실수에서의 해석학이 익숙하지 않으면 결코 안 될 것이고 그쯤 되면 어차피 무한대 관련된 오해를 할 일이 없을 터이니, 아무래도 상관 없을 일일 것이다.[12]

수학자 존 호튼 콘웨이(John Conway, 1937~2020)[13]는 게임으로 수를 해석하는 독창적 관점을 제시하였고, 초현실수(surreal number)라는 개성있는 체계를 탄생시켰다. 이 수 체계는 무한대([math(\omega)]) 및 무한소([math(\epsilon)])를 포함하고, 이들을 이용해 [math(2\omega)], [math(\omega-1)], [math(\displaystyle \frac{\omega}{2})], [math(\omega^2)], [math(\sqrt{\omega})], [math(2\epsilon)], [math(\epsilon-1)], [math(\displaystyle \frac{\epsilon}{2})], [math(\epsilon^2)], [math(\sqrt{\epsilon})], [math(\omega+\epsilon)], [math(\omega-\epsilon)] 등등 자유자재로 연산을 할 수 있는 기묘한 (field)이다. 그런데 신기한 것은, 무한대가 존재하는 이 수 체계에서도 '가장 큰 수'는 여전히 정의되지 않는다.

임의의 유한한 수보다 큰 수를 '초한수'(transfinite number)라고 한다. 그 예로 최초의 극한 순서수인 [math(\omega=\mathbb{N})], 무한집합의 크기(cardinality)를 나타내는 초한기수 [math(\aleph_0=\left|\mathbb{N}\right|)] 등이 있다.[다만]

5.1. 위상수학

국소 컴팩트(locally compact) 공간을 컴팩트화(compactification)시킬 때, 추가하는 원소를 흔히 [math(\infty)]로 표현한다. 추가된 원소 [math(\infty)]는 정말로 무한대처럼 작동한다. 예를 들어, 실수 [math(\mathbb{R})]을 [math(\bar{\mathbb{R}})]로 컴팩트화할 때, 함수 [math(1/x)]를, [math(\frac{1}{\infty}=0)], [math(\frac{1}{0}=\infty)]로 정의하여 확장하면 이는 연속함수이다.

복소평면 [math(\mathbb{C})]에 무한대점[math(\infty)]을 취해 컴팩트화한 [math(\hat{\mathbb C})]는 구와 위상동형이고, 이 때의 위상동형함수는 극사영 함수(stereographic function)이고, 그 구는 리만 구(Riemann sphere)라 불린다. [math(\infty)]는 리만 구의 북극에 대응한다.

이를 이용하면 수열의 극한에서 무한대가 엡실론-델타 논법의 극한과 본질적으로 같다는것을 직관적으로 이해할 수 있다. 위 과정을 거쳐 [math(\infty)] 점이 추가된 집합에서는 무한대의 정의를 [math(\infty)]점과의 차이를 줄이는 것으로 설명할 수 있기 때문.

6. 창작물에 나오는 무한대

서브컬쳐물에선 주인공이나 악역이 "내 힘(or 능력)은 무한대다!" 라고 언급하기도 하는 데, "내 힘은 한계가 없으니 한계있는 너보다 강하다"라는 의미를 지니고 있다. 그러나 실제로 강하기보단 허세일 때가 많다. 악역들 대다수 이 말을 하고 주인공에게 잔뜩 털린다.

판타지일 경우에는 마력이 무한대여서 마법을 자유자재로 사용하는 경우가 대다수이며, SF일 경우에는 영구기관에서 나오는 에너지를 무한동력이라고 언급하는 경우가 많다.

게임에서는 소모없이 아이템을 사용하거나 스킬/마법/자원을 원없이 활용할 수 있는 방식으로 구현된다. 기본적으로 치트다보니 사용/시전 횟수만 무한이거나, 실질적인 위력/효과가 약한식으로 밸런스를 맞추거나, 게임 막판에 얻거나, 숨겨진 요소 및 클리어 특전 형식으로 제공된다.

< 비데리 논 에쎄: 무한대로의 모험>처럼 아예 무한대 자체를 소재로 다룬 소설도 존재한다.

MBC에서 방영됐던 무한도전 또한 무한한 도전을 의미하기도 하며, 정준하는 이 프로그램에서 해골 무한 개를 먹은 적이 있다.

7. 관련 문서


[1] # [2] 극한에서 극한값도 '특정 값에 계속해서 가까워지지만 닿을 수는 없는 것'으로 이해할 가능성이 크다. [3] 이런 표현이 잘못되었다는 것은 아니며, 수학자들도 쓰는 표현이다. 수학자들이 외면한 표현이라 하더라도, 이 표현은 버리기엔 너무 아깝다. 처음 배우는 이들에게는 엄밀함보다는 직관이 중요한데, 이 표현은 아주 직관적이기 때문이다. [4] 조금 다르지만 본질은 마찬가지인, 함수의 극한의 정의 엡실론-델타 논법을 검색해보자. "한없이 다가간다"는 느낌이 바로 드는가? [5] 정말 정말 간단하게 설명하자면 "한없이 다가간다" 보다는 "차이를 줄인다"라는 표현이 더 어울린다. [6] 크기와 값을 결정할 수 없다. 이 때문에 무한대는 실수가 아니다. [7] 엄밀한 정의 없이 직관적 정의로 해석학을 하려다 보니, 온갖 모순들이 생겨났다. 심지어 오일러도 진동 급수의 대표적인 예인 [math( sum_{n leq 0}(-1)^n )]이 [math( 1/2 )]에 수렴한다고 했다. [8] 다만 비표준 해석학이라는, 초실수체계를 도입하여 무한대와 무한소를 엄밀하게 정의한 해석학도 존재한다. [9] 그 당시에는 정의를 내리지 않았기에 의미라고 표현했다. [10] 비슷한 예를 대수학에서도 볼 수 있는데, 다항식에서 0의 차수(degree)를 [math(-\infty)]로 종종 두곤 하는 것이 그 예이다. 물론 [math(-\infty)]은 0을 포함한 모든 자연수보다 (즉 다른 모든 다항식의 차수보다) 항상 작다. 이렇게 하면 많은 부분에서의 설명이 한결 간결해진다. 다만 모든 책에서 항상 보이지 않는데, 아무래도 측도론에서 확장된 실수를 적극적으로 쓰지 않으면 설명 및 서술이 고문(!) 수준으로 많이 힘들어지는 것과 다르게 대수학에서는 저거 안 쓴다고 심각할 정도로 분량이 늘어난다든가 할 일이 의외로 없어서 그럴 것이다. [11] 무한대+실수 혹은 무한대+무한대 같은 연산이 제법 빈번하게 일어나긴 하지만 대부분의 경우 그냥 무한대로 쳐도 문제가 없을 뿐더러 자연스럽다. (어차피 앞서 언급한 일부 연산에서 이미 정의됐다) 게다가 무한대-무한대 같이 껄끄러운 상황은 의외로 잘 일어나지 않는다. 사실 그런 난감한 것이 나타날 상황 쯤 되면 무한대가 나올 케이스를 알아서 피해가긴 (아니면 알아서 피해가야 하긴) 하지만. [12] 거꾸로 말하자면, 측도론을 제대로 시작하지도 못할 정도의 수학적 지식을 가진 채 확장된 실수를 가지고 무한대를 논한다든가 하면 곤란하다는 이야기이다. 만약 스스로 생각하기에 학부 (즉, 대학교 과정) 해석학도 제대로 소화하지 못한 것 같으면 (예를 들어 엡실론-델타 논법을 제대로 이해하지 못했다든가) 어디 가서 확장된 실수 같은 걸 논하는 것이 절대 좋은 생각은 아니라는 것이다. 사실 이건 확장된 실수 뿐만 아니라 이 문서에서 언급된 모든 무한대(+무한소)에 대해서도 마찬가지이다. [13] 콘웨이의 생명 게임을 만든 그 콘웨이이다. [다만] 기수(cardinality) 자체를 [math(|X|)]가 [math(X)]와 일대일 대응가능한 최소의 서수로 정의하는 것이 흔하고, 이 경우 [math(\aleph_0=\omega)]이다.