최근 수정 시각 : 2022-05-03 17:31:07

행렬(수학)

[[대수학|대수학
Algebra
]]
{{{#!wiki style="margin:0 -10px -5px; word-break: keep-all;"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="letter-spacing: -1px"
{{{#!wiki style="margin:-6px -1px -11px"
이론
기본 대상 연산 · 항등식( 가비의 이 · 곱셈 공식( 통분 · 약분) · 인수분해)) · 부등식( 절대부등식) · 방정식( 풀이 · ( 무연근 · 허근 · 비에트의 정리( 근과 계수의 관계) · 제곱근( 이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술( 시계 산술)
수 체계 자연수( 소수) · 정수( 음수) · 유리수 · 실수( 무리수( 초월수) · 초실수) · 복소수( 허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요토픽
대수적 구조
군(group) 대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring) 아이디얼
체(field) 갈루아 이론
대수 가환대수 · 리 대수 · 불 대수( 크로네커 델타)
마그마 · 반군 · 모노이드 자유 모노이드 · 가환 모노이드
선형대수학 벡터 · 행렬 · 선형사상 · 가군(Module)
정리 · 추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
분야와 관심대상
대수기하학 대수다양체 · 스킴 · 에탈 코호몰로지 · 모티브 · 사슬 복합체
대수적 정수론 타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학 스펙트럼
표현론
기타 및 관련 문서
수학 관련 정보 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재 }}}}}}}}}}}}

선형대수학
Linear Algebra
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=#006ab8> 기본 대상 일차함수 · 벡터 · 행렬 · 선형 변환
대수적 구조 가군(모듈) · 벡터 공간 · 내적 공간
선형 연산자 <colbgcolor=#006ab8> 기본 개념 연립방정식 · 행렬곱 · 단위행렬 · 역행렬 크라메르 공식 · 가역행렬 · 전치행렬 · 행렬식( 라플라스 전개) · 주대각합
선형 시스템 기본행연산 기본행렬 · 가우스-조르당 소거법 · 행사다리꼴 · 행렬표현 · 라그랑주 보간법
주요 정리 차원 정리 · 가역행렬의 기본정리 · 선형대수학의 기본정리 · 스펙트럼 정리
기타 제곱근행렬 · 멱등행렬 · 멱영행렬 · 에르미트 행렬 · 야코비 행렬 · 방데르몽드 행렬 · 아다마르 행렬 변환
벡터공간의 분해 상사 · 고유치 문제 · 케일리-해밀턴 정리 · 대각화 · 삼각화 · 조르당 분해
벡터의 연산 내적 · 외적( 신발끈 공식) · 다중선형형식 · [math(boldsymbolnabla)] · 크로네커 델타
내적공간 그람-슈미트 과정 · 수반 연산자( 에르미트 내적)
다중선형대수 텐서 · 텐서곱 · 레비치비타 기호 }}}}}}}}}

1. 개요2. 상세
2.1. 행렬의 연산2.2. 역행렬2.3. 특수한 행렬
2.3.1. 영행렬2.3.2. 정사각행렬2.3.3. 단위 행렬2.3.4. 대칭 행렬2.3.5. 에르미트 행렬2.3.6. 멱등 행렬
3. 중등교육과정
3.1. 교육학적 의의3.2. 일반과정 제외 논란3.3. 재포함의 기류
4. 프로그래밍5. 기타6. 관련 문서

1. 개요

matrix ·

1개 이상의 수나 식을 직사각형의 배열로 나열한 것을 말한다. 이때, 가로줄을 행(行, row), 세로줄을 열(列, column)[1]이라고 부른다.

2. 상세

행렬은 아서 케일리와 윌리엄 로원 해밀턴이 발명했으며, 역사적으로 본다면 행렬' 연립일차방정식의 풀이를 어떻게 하면 될까?'라고 고민한 데서 시작했다. 아서 케일리가 연구하던 중에 행렬식의 값에 따라 연립방정식의 해가 다르게 나오는 것을 보고 이것이 해의 존재 여부, 즉 행렬의 가역 여부(invertibility)를 판별한다는 관점에서 determinant라고 부른 데서 행렬식이 탄생했고, 윌리엄 로원 해밀턴이 '야, 그러면 연립 방정식의 계수랑 변수를 따로 떼어내서 쓰면 어떨까?'라는 생각에서 행렬이 탄생했다. 즉, 역사적으로 보면 행렬식이 행렬보다 먼저 탄생했다.

사실 그 존재가치는 함수 내지는 사상(, map)을 표현하기 위한 도구라는 데 있다. 모든 선형 변환은 행렬로 표현할 수 있고 그 역도 성립한다. 즉, 행렬은 선형 변환과 같다. 이를 선형대수학의 기본정리라고[2] 한다. 행렬의 곱셈을 덧셈이나 뺄셈처럼 안 하고 복잡하게 정의해 놓은 이유도 여기 있다. 참고로 정확히 말하면 차원이 [math(n)]인 [math(F)]-벡터공간에서 차원이 [math(m)]인 [math(F)]-벡터공간으로 가는 선형변환의 집합과 [math(F)] 위의 [math(n\times m)] 행렬의 집합이 [math(F)]-대수(algebra)로서 동형(isomorphic)인 것인데, 선형대수학 수준에서는 증명은 다 하면서도 어물쩡 넘긴다.

독립변수 1개, 종속변수 1개인 일반적인 일변수함수는 행렬 개념을 쓰지 않고도 수로 직관적으로 설명할 수 있지만, 정의역이나 공역의 차원이 둘 이상이 되기 시작하면 그때부터는 수가 아니라 행렬로 함수를 표현해야 한다.[3] 예컨대 정의역이 2차원이고 공역이 3차원인 함수(대응)를 표현하는 행렬은 [math(3 \times 2)] 행렬이다. 중·고급 수학의 핵심 개념.

보통 이과 학생들은 대학에서 선형대수학을 배우면서 미지수가 2개 이상인 방정식이나, 둘 이상의 변수로 정의되는 함수를 표현하려면 행렬이 필수적이다. 이공계에서 선형대수학은 정말 활용도가 높은 과목이기에 몇몇 특수한 학과[4]가 아닌 이상 전부 이를 배우게 된다. 왜냐하면 실제 세계를 수식으로 모델링 할 때는 필연적으로 여러 개의 방정식을 동시에 만족시키는 해 또는 근사를 구해야 하고, 이를 위한 방법론 중 가장 대표격이 선형대수학이기 때문이다. 물론 수학과 학생들은 이런 '행렬 활용법'에 가까운 공대 선형대수 이상의 원론적인 개념으로 행렬에 대해 접근하게 된다.

아래와 같이 하나의 열로 구성되면 열벡터, 하나의 행으로만 구성되면 행벡터라고 한다. 보통 책에는 조판이 귀찮아서 열벡터는 행벡터를 전치(Transpose)를 이용해 나타내는 경우가 있다.

[math(\displaystyle \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \qquad \qquad \mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix} )]


행렬은 보통 다음 두 형태 중 하나로 표기한다.

[math(\displaystyle \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \qquad \qquad \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} )]

공통수학과정이 아닌 선형대수학에서 행렬을 쓸 때는 보통 왼쪽의 형태를 많이 쓴다. 행렬 연산의 중첩이 많기도 하고, 표기가 같은 치환과의 혼동이 있다 보니 일반 괄호 '( )'와 헷갈림을 방지하기 위해서이다.

또한, 행렬 [math(A)]의 [math(i)]번째 행, [math(j)]번째 열의 원소를 [math( A_{ij})]로 나타낸다.

참고적으로 공과 계열에서는 벡터 형태의 변수를 나타낼 때에는 일반 괄호를 쓰고 함수를 의미하는 행렬을 나타낼 때에는 대괄호를 씀으로써 항의 의미를 명확히 하는 경우도 종종 있다. 예컨대 연립일차상미분방정식이나 고차상미분방정식에서 볼 수 있는 [math( \dot{x} = A x )] 꼴의 수식을

[math(\displaystyle \begin{pmatrix}\dot{x}_{1}\\\dot{x}_{2}\end{pmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}\begin{pmatrix}x_1\\x_2\end{pmatrix} )]

로 나타내곤 한다.

2.1. 행렬의 연산

2.1.1. 덧셈

행렬의 크기가 서로 같은 경우에만 할 수 있으며, 대응하는 원소끼리 더하고 뺀다.

임의의 크기가 같은 두 행렬 [math( A )], [math(B )]에 대하여

[math(A+B=[A_{ij}+B_{ij}] )]

로 정의된다.

2.1.2. 상수배

모든 원소에 해당 상수를 곱한 형태가 된다. 즉, 임의의 한 행렬 [math(A)]에 대하여 임의의 상수 [math(k)]에 대한 상수배에 대하여

[math( kA=[kA_{ij}] )]

로 정의된다.

2.1.3. 행렬곱

파일:상세 내용 아이콘.svg   자세한 내용은 행렬곱 문서
번 문단을
부분을
참고하십시오.

2.1.4. 전치

파일:상세 내용 아이콘.svg   자세한 내용은 전치행렬 문서
번 문단을
부분을
참고하십시오.

2.1.5. 행렬식

파일:상세 내용 아이콘.svg   자세한 내용은 행렬식 문서
번 문단을
부분을
참고하십시오.

2.1.6. 주의점

  • [math(\boldsymbol{1 \times 1})] 행렬은 스칼라가 아니다.
    행렬에 관해서, 특히 프로그래밍으로 행렬 개념에 입문한 사람들이 자주 하는 오해 중 하나이다. 하지만 위에 나온 행렬 곱과 스칼라 곱의 정의를 보면 알겠지만, 스칼라를 [math({1 \times 1})] 행렬과 같은 것으로 생각하면 두 정의가 서로 충돌되기 때문에 둘은 수학적으로는 완전히 다른 개념으로 사용해서 모호함을 피하는 편이다. 애초에 속한 집합부터 다르다.

    행렬의 곱셈법도 사실 행렬곱과 행렬-스칼라 곱은 정의된 집합부터 완전히 다를 수밖에 없다.

    다만 MATLAB이나 NumPy 코딩은 Broadcasting이라는 개념을 통해 행렬과 [math({1 \times 1})] 행렬 사이의 곱셈이나, 수와 [math({1 \times 1})] 행렬 사이의 덧셈 같은 것들이, 프로그래밍적 상황에서는 효율적이거나 유용하다는 이유로 정의되어 있다는 점에 유의하자. 이 때의 덧셈과 곱셈은, 일반적 의미로의 행렬의 덧셈과 곱셈과는 다르다.
  • 행렬곱과 내적은 다른 것이다.
    백터를 행렬처럼 기술하는 경우가 많은데, 행렬곱과 내적을 같은 기호를 쓴다거나 하면 모호해지게 되니 주의하자. 두 벡터를 열벡터로 생각했을 때, 내적을 행렬곱으로 바꾸려면, 앞의 벡터에는 전치가 따라붙게 된다([math(\bold{A} \cdot \bold{B} = \det (\bold{A}^T \bold{B}))]).[5] 특히 복소수 벡터의 경우 전치가 켤레 전치가 되기 때문에, 해당 개념은 혼동한 채 계산을 한다거나 프로그래밍을 하게 되면 큰 실수를 할 수 있다.

2.2. 역행렬

파일:상세 내용 아이콘.svg   자세한 내용은 역행렬 문서
번 문단을
부분을
참고하십시오.

2.3. 특수한 행렬

2.3.1. 영행렬

/ zero matrix
모든 성분이 0인 행렬로 기호로는 [math(O)]로 적는다. 이 영행렬은 행렬의 덧셈의 항등원이므로 크기가 같은 임의의 행렬 [math(A)]에 대하여 다음이 성립한다.

[math(A+ O =O+A=A)]

2.3.2. 정사각행렬

/ square matrix

정방()행렬이라고도 한다. [math(n \times n)] 행렬을 의미한다. 정사각행렬을 모두 모으면 행렬환 [math(M_{n}(F))]을 이룬다. 특히, 이 행렬환은 수학사적으로 의미가 매우 깊다. 흔히 대수학의 해방이라 일컬어지는 대수학의 인식전환의 계기가 되었다. 그전까지 모든 대수적 대상에서 교환법칙이 성립하는 줄 알았는데, 해밀턴 사원수와 더불어, 교환법칙이 성립하지 않는 대수였기 때문이다.[6] 그리고, 행렬환은 환들 중에서 조건이 가장 열악하기 때문에, 많은 반례들을 여기서 찾을 수 있다.

아래에 등장하는 모든 행렬은 전부 정사각행렬에 해당한다.

2.3.3. 단위 행렬

/ identity matrix

주대각성분은 모두 1이고 나머지 성분은 모두 0인 행렬로 기호로는 [math(I)], [math(E)] 등으로 적으며, 다음이 성립한다.

[math(\displaystyle I_{ij}=\delta_{ij} )]

여기서 [math(\delta_{ij})]는 크로네커 델타이다.
즉,

[math(\displaystyle I_n=[\delta_{ij}] )]

단위 행렬은 행렬환의 단위원, 즉, 행렬곱의 항등원이 된다. 특성상 주대각합은 행렬의 크기와 동치이다.

수치 프로그래밍에서는 n차 단위행렬 [math(I_n)]을 나타내는 함수로 I와 발음이 같은 eye를 많이 사용한다.

2.3.4. 대칭 행렬

/ symmetry matrix

[math(n)]차 정사각행렬 중에서, 자신의 전치행렬과 같은 행렬.

[math(A=A^{T})]

인 행렬이다. 즉,

[math(A_{ij}=A_{ji})]

의 성질을 만족시키는 행렬이다.

2.3.5. 에르미트 행렬

실수 대칭행렬을 복소수 범위로 일반화시킨 행렬로, 전치행렬의 각 원소의 켤레를 취한 행렬[약칭]과 본 행렬이 같은 행렬을 의미한다. 즉,

[math(A_{ij}=\overline{{A}_{ji}})]

의 성질을 만족시키는 행렬이다. 행렬 중에서도 매우 특이한 성질이 존재[8]하여, 선형대수에서도 매우 특별하게 취급되는 행렬이다. 자세한 것은 해당 문서를 참조하자.

2.3.6. 멱등 행렬

파일:상세 내용 아이콘.svg   자세한 내용은 멱등행렬 문서
번 문단을
부분을
참고하십시오.

3. 중등교육과정

2007 개정 교육과정까지는 고등학교 일반계 과정에 문이과 공통으로 포함되어 있었다가, 2011학년도 고1 입학생부터는 일반적인 수학 교육과정에서 배울 수 없게 되었다.

3.1. 교육학적 의의

일단 행렬이 수학교육학에서 갖는 의의는, 학생들이 일반적으로 익숙해져 있는 실수 다항식에서의 곱셈의 교환법칙과 달리, 행렬의 곱셈에서는 교환법칙이 성립하지 않을 수도 있다는 점이다. 쉽게 말해 '편견 깨기용'으로 적합한 내용이다. 그래선지 이를 간과하면 틀릴 수도 있는 상황을 행동 영역(쉽게 말해 문제 학습)에 간접적으로 제시하는 편이었다.

3.2. 일반과정 제외 논란

2009 개정 교육과정(2011년 고1 첫 적용)을 기점으로, 일반 이수 수학 교육과정에서 빠지게 되었고, 이와 연계되었던 기저 개념인 이항연산, 항등원과 역원도 같이 빠지게 되었다. 이에 자연·공학계 대학 교수들이 '이런 기본적인 것도 안 배우고 오면 어떡하냐'고 지속적으로 큰 불만을 표출해 오고 있다. 실제로 행렬의 일반 과정 제외에는 20%밖에 동의를 얻지 못했는데도 일반 과정에서 빠졌으며, 차라리 빼더라도 '행렬의 곱셈'만 제외하고 표현법이나 덧셈만 간단히 다뤘어야 한다는 의견이 있었다.[10]

반면에, 행렬의 실무·공학적 쓰임새가 광범위하다는 진로(공학)적 의의와 달리, 교육학적 의의에서 행렬을 보는 시선은 조금 다른 편이다. 윗문단에 상기했듯이, 교육에서는 행렬의 직업적 실용성(쓰임새) 자체보다 논리학적 반례 교육에 역점을 두기 때문이다.[11] 순수 교육학적 의의만 따진다면, 행렬로써 '논리적 간과성'을 경고하는 것은 좋으나, 난이도 측면에서 연산의 선입견을 깨는 과정이 고등학생들에게 다소 부담스럽다는 것도 부정하기 힘들었다. 또한 연산의 선입견을 깨는 건 고1 시기 (공통)수학 때 배우던 '이항연산에 관한 연산법칙'에서 다뤄도 충분했다.[12]

3.3. 재포함의 기류

하지만 교육적 의의만 우선시할 수 없어서인지, 2020년부터 중간 신설된 교과인 인공지능 수학에서 행렬의 간단한 표현법 정도는 다루었다. 대신에 전국 개설율이 1%도 안 되어서 사실상 의미없는 행정이 되었다. 이후 고심 끝에 2022 개정 교육과정(2025년 첫 적용)에서는 문이과 공통 수학으로 다시 부활할 예정이라고 한다. 아직 확정은 아니지만, 매회 개정안 자료에 따르면 일반선택과목화 없이 계속 고1 수학에 배치되는 것으로 나왔으므로, 이변이 없는 한 고1 수학에서 배울 것으로 보인다.[13]

4. 프로그래밍

  • Dense Matrix
    사각형 모양의 배열에 행렬의 모든 값을 담는 것으로, 수학에서 사용되는 행렬과 똑같이 사용할 수 있기 때문에, 알고리즘도 그대로 적용 가능하고 프로그래밍하기 쉽다. 다만, 행렬에 0이 많으면 메모리를 많이 잡아먹고 쓸데없는 계산도 늘어나기 때문에 비효율적이라는 단점이 존재한다. 그런데, GPGPU의 압도적인 계산 능력을 활용할 수 있다면, 그냥 0은 무시하고 배열을 써서 쉽게 구현하고 모든 계산은 GPGPU 에게 맡겨 버리는 것이 여러 모로 유리하다.
  • Sparse Matrix
    • CSR Matrix
    • CSC Matrix
    • DOK Matrix
    • Banded Matrix

    Dense Matrix와 달리 Ragged Array나 Hash Table형의 자료 구조를 이용해 필요한(0이 아닌) 숫자만 압축해서 기술하는 방법이다. 행렬의 구성요소에 접근하는 방법이 아예 달라지니, Decomposition 같은 알고리즘을 구현하려면 머리를 좀 써야 한다.
    Finite Difference 같은 유형의 문제를 풀다 보면 알겠지만, 행렬로 모델링 했을 때 대각선 부분에 0이 아닌 숫자가 집중되는 경우가 많고, 이런 경우 특수한 알고리즘을 이용해 Gaussian Elimination 같은 문제를 효율적으로 풀 수 있다. 과학이나 공학 문제에는 이런 유형의 문제가 스케일만 커진 채로 자주 등장하기 때문에, 행렬의 특성을 잘 공부해서 위에 나온 다양한 종류의 Sparse Matrix 중 하나로 모델링 하면 문제를 더 효율적으로 풀 수 있다.
    다만 행렬의 모양이 위에 말한 Sparse Matrix마다의 권장되는 규격과 다르거나, 0이 별로 없는 행렬이 나온다면 Sparse Matrix를 이용하는 것이 오히려 더 비효율적일 수 있으므로 주의하도록 하자.

5. 기타

  • 계산 노가다가 행 하나, 열 하나 더해질 때마다 무지막지하게 늘어난다. 예를 들어 행렬식을 구하는 경우, 3차 정사각행렬은 2차의 3배의 계산을, 4차 정사각행렬은 3차의 4배의 계산을 필요로 한다. 5차 정도 되면 맨손으로는 도저히 못 푼다. 뭐 다행스럽게도 실제로 풀 때는 그렇게 계산하라고 하진 않고, 가우스 소거법으로 어찌저찌 잘 풀 수는 있다. 물론 머리 아프기는 마찬가지. 다만 컴퓨터 연산에 매우 친화적이라서 슈퍼컴퓨터의 점수놀음은 대부분 행렬 연산에 기반을 둔 애플리케이션의 실행 시간으로 행해진다. 이를테면 [math(y=ax²+bx+c)]와 같은 기본적인 이차방정식도 이를 컴퓨터로 하여금 계산하게 하는 것은 매우 난감하다. 사람은 직관적으로 이런 식을 이해할 수 있지만, 컴퓨터는 그렇지가 못하기 때문이다. 그러나 이를 행렬식으로 표현하면 문제는 아주 간단해진다. 그냥 곱하기 더하기 연산만 여러 번 반복하면 그게 곧 결과값이 되니까. 이는 컴퓨터에서 하나의 연산을 빠르게 하는 건 어렵지만 같은 시간에 더 많은 데이터에 대해 동일한 연산을 일률적으로 처리하는 건 쉽기 때문이다. 대표적인 예로 인텔 CPU의 MMX나 SSE, 요즘 슈퍼컴퓨팅에서 핫한 GPGPU FPGA가 그런 전략을 쓴다. 이런 것과 별도로 병렬 프로그래밍을 써서 멀티코어나 MPI나 Hadoop MapReduce 등을 활용하는 것도 결국 이 원리에 해당한다.
  • 행렬(行列)은 일본식 표현으로, 일본에서는 교-레츠(行列)라고 읽는다. 중국어로는 구진(矩阵, 쥐전)이라고 부른다. 다만 행렬식이나, (행렬을 구성하는) 행, 열의 경우 한중일의 표기가 동일하다.

6. 관련 문서



[1] column에는 기둥이라는 뜻도 있다는 것을 알면 세로줄이라는 뜻도 쉽게 이해가 된다. [2] 대수학의 기본 정리, 산술의 기본 정리, 미분적분학의 기본 정리와 함께 4대 정리라고 부르는 사람도 있다. 사실 이 4개의 정리 모두 대수학, 선형대수학, 해석학, 정수론 등에서 중요하고 기본이 되는 정리들이다. [3] 행렬로 연립방정식을 풀어 본 사람이라면 감이 올 것이다. 이게 정의역이 두 개 이상인 함수의 맛보기이다. [4] 예를 들어 산업 디자인 학과. 이 학과의 경우 행렬은커녕 수포자 수준으로 고등학교 수학을 몰라도 전공을 배우는 데 문제가 없다 카더라. [5] 행벡터인 경우 [math(\mathrm{tr}(\bold{A}^T \bold{B}))] [6] 사실 머리를 좀 굴려보면 사원수는 물론이고 복소수, 이원수, 분할복소수 모두를 실행렬만으로 표현하는게 가능하다. [약칭] 전치 켤레 행렬이라고 한다 [8] 예를 들어서, 모든 에르미트 행렬은 그 고유값이 반드시 실수가 되며, 서로 다른 고유벡터를 취하면 반드시 서로 직교하게 되는 등 여러 독특한 성질을 지니고 있다.. [9] 간단한 표현만 다룬다. [10] 다만, 행렬에서 곱셈이 갖는 의미가 너무 커서 반려된 듯하다. [11] 교육학에서는, 어떤 개념을 두고 사고력과 논리 전개방식을 발전시키는 '재료'로써 활용하자는 관점은 있어도, 단순한 진로·실무·현장 노동만을 위한 쓰임새로 보는즉 대중적인 시각과는 거리가 멀다. 물론 교육학에서 진로나 실무를 아예 간과하는 건 아니지만, 행렬처럼 교육학적 의의와 진로적 의의 사이의 결이 너무 상이한 것들은 지속적으로 빼는 추세이다. [12] 행렬과 마찬가지로 어떤 이항연산에서도 연산의 교환법칙이 성립하지 않을 수도 있기 때문. 사실 이항연산이 행렬의 이러한 특이한 성격을 일반화한 버전이다. 다만, 이 이항연산이 행렬의 저런 성질을 좀 더 일반화한 개념이므로, 차라리 행렬을 선수과정에 놓고 '곱셉의 교환법칙이 성립하지 않는다'는 짧은 서술로 퉁친 뒤, 이항연산을 추후 '대수' 영역 과정에서 다루는 편이 나았을 것이다. [13] 왜 고1 수학인지 궁금하다면, 과거 행렬이 삭제된 이유를 생각해야 한다. 바로 수능에서의 괴악한 합답형 문항이었다. 그렇기에 배울 필요는 있지만 직접 출제에 들어가면 저런 문항이 부활해 반발을 살테니 두 마리 토끼를 모두 잡고자 고1로 내리는 것이다.



파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r275에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r275 ( 이전 역사)
문서의 r ( 이전 역사)



파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r11에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r11 ( 이전 역사)
문서의 r ( 이전 역사)