1. 개요
超 越 函 數 / transcendental function대수함수가 아닌 함수, 즉 다항함수가 포함된 다항식의 근으로 나타낼 수 없는 함수이다. 즉, 어떤 2변수 다항식 [math(\Phi)]가 [math(\Phi(x,f(x))=0)]을 만족시키면 [math(f)]는 대수함수라 할 수 있고, 그렇지 않은 함수들이 초월함수이다.[1] 초등함수인 지수함수, 로그함수, 삼각함수는 모두 초월함수이다.[2] 반대로 대수함수이지만 초등함수가 아닌 함수도 많다. 대표적으로 브링 근호가 있다.
2. 상세
초월함수(transcendental function)들은 대수적으로 표현할 수 없는 함수로 주로 미분방정식 및 적분방정식의 풀이에 등장한다. 대표적으로 베셀의 미분 방정식 [math(x^2 y'' + xy' + (x^2-n^2)y=0)]을 풀었을 때 나오는 베셀 함수(Bessel function)가 그 예이다. 이 함수는 원통좌표계(cylindrical coordinate system)가 들어간 물리현상이면 거의 무조건이라고 해도 좋다 싶을 정도로 등장한다. 특수한 경우가 아니면 일반적인 초등함수로 나타내어질 수 없기에 난해하지만, 삼각함수의 성질만큼이나 다양한 성질들을 가지고 있으며 활용되는 곳도 많다.특수함수(special function)는 특수한 목적으로 고안된 함수로 초월함수를 포함하는 광범위한 부류의 명칭으로 쓰이곤 한다. 보통 초월함수라 하면 미분방정식 및 적분방정식의 풀이에서 등장하는 특수함수들을 의미하고, (경우에 따라 다르긴 하지만) 소수 계량 함수 같은 불연속인 특수함수들은 잘 포함시키지 않는 편이다.[3]
물리학과와 공학계열은 기초 미적분학에서 쌍곡함수를 만나고, 감마 함수, 베셀 함수, 르장드르 함수 정도는 공업수학, 수리물리학이나 각종 전공에서 심심치 않게 만난다. 수학과는 정수론 중 해석적 정수론을 공부하면 리만 제타 함수의 친척들인 [math(L)]-함수 등의 특수함수들을 지겹게 보게 될 것이다.
3. 초월함수/특수함수들의 목록
초등함수 Elementary Functions |
||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all" |
<colbgcolor=#567843> 대수함수 | 다항함수 ( 상수 · 1차 · 2차 · 3차 · 4차 · 추론 · 공식 ( 길이 · 넓이 ) · 소수생성) · 유리함수 · 무리함수 |
초월함수 | 지수함수( 확률밀도함수 · 허수지수함수 ) · 로그함수 ( 복소로그함수 ) · 삼각함수 · 역삼각함수 · 쌍곡선 함수 · 역쌍곡선 함수 | }}}}}}}}} |
특수함수 Special Functions |
||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all" |
<colbgcolor=#383B3D><colcolor=#fff> 적분 | 오차함수(error function)( 가우스 함수 · 가우스 적분 함수) · 베타 함수( 불완전 베타 함수) · 감마 함수( 불완전 감마 함수 · 로그 감마 함수) · 타원 적분 · 야코비 타원 함수 · 지수 적분 함수 · 로그 적분 함수 · 삼각 적분 함수 · 쌍곡선 적분 함수 · 프레넬 적분 함수 · 구데르만 함수 |
미분방정식 | 르장드르 함수[math(^\ast)] ( 구면 조화 함수) · 베셀 함수 · 에르미트 함수 · 라게르 함수 · 에어리 함수 | |
역함수 | 브링 근호 · 람베르트 W 함수 · 역삼각함수 | |
급수 | 제타 함수 · 후르비츠 제타 함수 · 세타 함수 · 초기하함수 · 폴리로그함수 · 폴리감마 함수 · 바이어슈트라스 타원 함수 | |
정수론 | 소수 계량 함수 · 소인수 계량 함수 · 뫼비우스 함수 · 최대공약수 · 최소공배수 · 약수 함수 · 오일러 피 함수 · 폰 망골트 함수 · 체비쇼프 함수 · 바쁜 비버 함수 | |
기타 | 헤비사이드 계단 함수 · 부호 함수 · 테트레이션( 무한 지수 탑 함수) · 지시함수 · 바닥함수 / 천장함수 · 허수지수함수 · 혹 함수 | |
[math(^\ast)] 특수함수가 아니라 특정 조건을 만족시키는 다항함수이지만, 편의상 이곳에 기술했다. |
\dfrac{|z|^2}{z} &\textsf{if }z\neq 0\\
0 &\textsf{if }z=0
\end{cases})]
허수부의 부호를 반전시키는 함수이다.
* 실수부/허수부 함수
실수부 함수의 경우 [math((\Re\circ\Re)(z)=\Re(z))]가 성립하는 멱등함수이다.
* 부호 함수[4]
0 &\textsf{if }x=0
\end{cases})]
절댓값 함수를 미분하면 나오는 함수로, 말 그대로 수의 부호를 판별한다. 일반적으로 양수를 넣을 경우 [math(1)]이, 음수를 넣을 경우 [math(-1)]이, [math(0)]을 넣을 경우 [math(0)]이 나온다. 주로 점화식에서 특정한 수의 부호만을 취할 때 사용한다. [math((\mathrm{sgn}\circ\mathrm{sgn})(x)=\mathrm{sgn}(x))]가 성립하는 멱등함수이다.
그런데 복소수가 들어올 경우 이 함수가 고장(?)이 나버리는데, 분모의 절댓값(엄밀히는 노름)이 복소수에서는 정의가 달라지기 때문이다.[5][6]
* 정규분포 함수
* 소수 계량 함수
* 감마 함수
* 제타 함수
* 타원 적분
* 르장드르 함수[8], 버금 르장드르 함수, 구면 조화 함수
* 베셀 함수[9], 노이만 함수(제2종 베셀 함수), 한켈 함수(제3종 베셀 함수), 수정 베셀 함수, 구면 베셀 함수, ...
* 오차함수[10]
* 라게르 함수 (Laguerre functions)
* 체비쇼프 다항식 (Chebyshev polynomial)
* Mathieu functions
* 에어리 함수 (Airy functions)
* 클라우젠 함수 (Clausen function)
* 람베르트 W 함수 (Lambert W function)
* 헤비사이드 계단 함수 (Heaviside step function)
학자마다 [math(x=0)]의 함숫값의 정의가 다른데, 위 정의처럼 [math(\theta(0)=\dfrac{1}{2})]로 잡고 쓰는 사람이 있고, 함수 정의에 최소 정수 함수 [math(\left\lceil x\right\rceil)]를 사용해 [math(\theta(0)=1)]로 잡고 쓰는 사람도 있다.
* 발판 함수 (ramp function)
또한 [math((R\circ R)(x)=R(x))]가 성립하는 멱등함수이다.
* 지시함수
여기서 [math(A=mathbb{Q})]로 정의한 [math(\bold{1}_{\mathbb{Q}}(x))]는 따로 디리클레 함수(Dirichlet Function)[19]라는 이름으로 불린다.
한편 [math(A=mathbb{N})]으로 정의한 [math(\bold{1}_{\mathbb{N}}(x))]는 멱등함수이다.
* 혹 함수 (bump Function)
\end{cases})]
허수부의 부호를 반전시키는 함수이다.
* 실수부/허수부 함수
[math(\Re(z)=\text{Re}(z)=\dfrac{z+\overline{z}}{2})]
[math(\Im(z)=\text{Im}(z)=\dfrac{z-\overline{z}}{2i})]
복소수에서
실수부 혹은
허수부만을 취할 때 사용하는 함수이다.[math(\Im(z)=\text{Im}(z)=\dfrac{z-\overline{z}}{2i})]
실수부 함수의 경우 [math((\Re\circ\Re)(z)=\Re(z))]가 성립하는 멱등함수이다.
* 부호 함수[4]
[math(\mathrm{sgn}(x)=\begin{cases}
\dfrac{x}{\|x\|} &\textsf{if }x\neq 0\\0 &\textsf{if }x=0
\end{cases})]
절댓값 함수를 미분하면 나오는 함수로, 말 그대로 수의 부호를 판별한다. 일반적으로 양수를 넣을 경우 [math(1)]이, 음수를 넣을 경우 [math(-1)]이, [math(0)]을 넣을 경우 [math(0)]이 나온다. 주로 점화식에서 특정한 수의 부호만을 취할 때 사용한다. [math((\mathrm{sgn}\circ\mathrm{sgn})(x)=\mathrm{sgn}(x))]가 성립하는 멱등함수이다.
그런데 복소수가 들어올 경우 이 함수가 고장(?)이 나버리는데, 분모의 절댓값(엄밀히는 노름)이 복소수에서는 정의가 달라지기 때문이다.[5][6]
* 복소 부호 함수
\dfrac{\Im(z)}{\|\Im(z)\|} &\textsf{if } \Re(z)=0,\Im(z)\neq 0\\
0 &\textsf{if } \Re(z)= 0,\Im(z)= 0
\end{cases})]
위 부호 함수가 복소수에서 고장나는 맹점을 해결하기 위해 복소수용으로 따로 만든 함수. 순허수일 경우에만 허수부의 부호를 판별하고 그 외의 경우에는 실수부의 부호만을 판별한다.
*
삼각함수
*
지수함수
*
로그함수
*
쌍곡선함수[math(\mathrm{csgn}(z)=\begin{cases}
\dfrac{\Re(z)}{\|\Re(z)\|} &\textsf{if } \Re(z)\neq 0\\\dfrac{\Im(z)}{\|\Im(z)\|} &\textsf{if } \Re(z)=0,\Im(z)\neq 0\\
0 &\textsf{if } \Re(z)= 0,\Im(z)= 0
\end{cases})]
위 부호 함수가 복소수에서 고장나는 맹점을 해결하기 위해 복소수용으로 따로 만든 함수. 순허수일 경우에만 허수부의 부호를 판별하고 그 외의 경우에는 실수부의 부호만을 판별한다.
* 정규분포 함수
* 소수 계량 함수
* 감마 함수
*
폴리감마 함수
*
베타 함수* 제타 함수
* 타원 적분
* 르장드르 함수[8], 버금 르장드르 함수, 구면 조화 함수
* 베셀 함수[9], 노이만 함수(제2종 베셀 함수), 한켈 함수(제3종 베셀 함수), 수정 베셀 함수, 구면 베셀 함수, ...
* 오차함수[10]
[math(\displaystyle\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}\mathrm{d}t)]
[math(\displaystyle\mathrm{erfc}(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}\mathrm{d}t)]
[math(\displaystyle\mathrm{erfi}(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{t^{2}}\mathrm{d}t)]
*
지수 적분 함수 (exponential integral)[11][math(\displaystyle\mathrm{erfc}(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}\mathrm{d}t)]
[math(\displaystyle\mathrm{erfi}(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{t^{2}}\mathrm{d}t)]
[math(\displaystyle\mathrm{Ei}(x)=-\int_{-x}^{\infty}\frac{e^{-t}}{t}\,\mathrm{d}t)]
*
로그 적분 함수 (logarithmic integral)[12][math(\displaystyle\mathrm{li}(x)=\int_{0}^{x}\frac{\mathrm{d}t}{\ln t})]
[math(\displaystyle\mathrm{Li}(x)=\mathrm{li}(x)-\mathrm{li}(2)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t})][13]
*
코사인/사인 적분 (cosine and sine integrals)[14][math(\displaystyle\mathrm{Li}(x)=\mathrm{li}(x)-\mathrm{li}(2)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t})][13]
[math(\displaystyle\mathrm{Ci}(x)=-\int_{x}^{\infty}\frac{\cos{t}}{t}\,\mathrm{d}t)]
[math(\displaystyle\mathrm{Si}(x)=\int_{0}^{x}\frac{\sin{t}}{t}\,\mathrm{d}t)]
*
쌍곡선 적분 함수 (hyperbolic integrals)[15][math(\displaystyle\mathrm{Si}(x)=\int_{0}^{x}\frac{\sin{t}}{t}\,\mathrm{d}t)]
[math(\displaystyle\mathrm{Shi}(x)=\int_{0}^{x}\frac{\sinh{t}}{t}\,\mathrm{d}t)]
[math(\displaystyle\mathrm{Chi}(x)=\gamma+\ln x+\int_{0}^{x}\frac{\cosh{t}-1}{t}\,\mathrm{d}t)][16]
*
프레넬 코사인/사인 적분 (Fresnel integrals)[17][math(\displaystyle\mathrm{Chi}(x)=\gamma+\ln x+\int_{0}^{x}\frac{\cosh{t}-1}{t}\,\mathrm{d}t)][16]
[math(\displaystyle S(x)=\int_{0}^{x} \sin t^2 \,\mathrm{d}t)]
[math(\displaystyle C(x)=\int_{0}^{x} \cos t^2 \,\mathrm{d}t)]
*
에르미트 함수 (Hermite functions)[math(\displaystyle C(x)=\int_{0}^{x} \cos t^2 \,\mathrm{d}t)]
[math(\displaystyle H_{n}(x)=(-1)^{n}e^{x^{2}}\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n}e^{-x^{2}})]
[math(H_{0}(x)=1)]
[math(H_{1}(x)=2x)]
[math(H_{2}(x)=4x^{2}-2)]
[math(H_{3}(x)=8x^{3}-12x)]
[math(H_{4}(x)=16x^{4}-48x^{2}+12)]
[math(\cdots)]
주로 양자역학에서 단순 조화 진동자 문제를 풀었을 때 튀어나오는 놈이다. 얘도 [math(n)]이 정수일 때는 다항함수로 나타난다.[math(H_{0}(x)=1)]
[math(H_{1}(x)=2x)]
[math(H_{2}(x)=4x^{2}-2)]
[math(H_{3}(x)=8x^{3}-12x)]
[math(H_{4}(x)=16x^{4}-48x^{2}+12)]
[math(\cdots)]
* 라게르 함수 (Laguerre functions)
[math(\displaystyle L_{n}(x)=\frac{e^{x}}{n!}\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n}(x^{n}e^{-x}))]
[math(L_{0}(x)=1)]
[math(L_{1}(x)=-x+1)]
[math(2L_{2}(x)=x^{2}-4x+2)]
[math(6L_{3}(x)=-x^{3}+9x^{2}-18x+6)]
[math(24L_{4}(x)=x^{4}-16x^{3}+72x^{2}-96x+24)]
[math(\cdots)]
*
버금 라게르 함수 (associated Laguerre functions)[math(L_{0}(x)=1)]
[math(L_{1}(x)=-x+1)]
[math(2L_{2}(x)=x^{2}-4x+2)]
[math(6L_{3}(x)=-x^{3}+9x^{2}-18x+6)]
[math(24L_{4}(x)=x^{4}-16x^{3}+72x^{2}-96x+24)]
[math(\cdots)]
[math(\displaystyle L_{n}^{k}(x)=(-1)^{n}\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{k}L_{n+k}(x))]
수소 원자의 슈뢰딩거 방정식을 풀었을 때 반지름 방향의 해에서 나타난다.* 체비쇼프 다항식 (Chebyshev polynomial)
[math(\displaystyle T_{n}(x)=\frac{(-1)^{n}(1-x^{2})^{1/2}}{(2n-1)!!}\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n}(1-x^{2})^{n-1/2})]
[math(\displaystyle U_{n}(x)=\frac{(-1)^{n}(n+1)}{(2n+1)!!\cdot(1-x^{2})^{1/2}}\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n}(1-x^{2})^{n+1/2})]
*
초기하함수 (hypergeometric functions)[math(\displaystyle U_{n}(x)=\frac{(-1)^{n}(n+1)}{(2n+1)!!\cdot(1-x^{2})^{1/2}}\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{n}(1-x^{2})^{n+1/2})]
*
브링 근호 (Bring radical)
* Whittaker functions[math(\mathrm{BR}(x)=-x\,{}_4{F}_3\left(\dfrac{1}{5},\,\dfrac{2}{5},\,\dfrac{3}{5},\,\dfrac{4}{5};\,\dfrac{1}{2},\,\dfrac{3}{4},\,\dfrac{5}{4};\,-5\left(\dfrac{5x}{4}\right)^4\right))]
초기하함수로 유도할 수 있는 함수로, 5차방정식의 실수해를 구할 때 쓰인다.
* Mathieu functions
* 에어리 함수 (Airy functions)
* 클라우젠 함수 (Clausen function)
* 람베르트 W 함수 (Lambert W function)
* 지수함수의 일종인 [math(xe^x)]의 역함수이다.
*
후르비츠 제타 함수 (Hurwitz zeta function)* 헤비사이드 계단 함수 (Heaviside step function)
[math(\theta(x)=\dfrac{1}{2}\left(\mathrm{sgn}(x)+1\right))][18]
부호 없는 부호 함수.
디랙 델타 함수의 원시함수이며, 디랙 델타 함수를 연구했던
올리버 헤비사이드의 이름을 따왔다.학자마다 [math(x=0)]의 함숫값의 정의가 다른데, 위 정의처럼 [math(\theta(0)=\dfrac{1}{2})]로 잡고 쓰는 사람이 있고, 함수 정의에 최소 정수 함수 [math(\left\lceil x\right\rceil)]를 사용해 [math(\theta(0)=1)]로 잡고 쓰는 사람도 있다.
* 발판 함수 (ramp function)
[math(R(x)=\dfrac{x}{2}(\mathrm{sgn}(x)+1)=\dfrac{|x|+x}{2})]
말 그대로 발판 모양의 그래프를 그리는 함수로, [math(x<0)] 구간에서는 함숫값이 모두 0이며, [math(x\geq 0)] 구간에서는 [math(y=x)]와 동일하다.
기계학습에서는 ReLU (Rectified Linear Unit) 활성화 함수라고 부른다.또한 [math((R\circ R)(x)=R(x))]가 성립하는 멱등함수이다.
* 지시함수
[math(\bold{1}_A(x)=\begin{cases}1&\textsf{if }x\in A\\0&\textsf{if }x\notin A\end{cases})]
원소가 해당하는
집합에 속해 있는가를 가리는 함수. 지시함수, 특성함수라고도 한다.여기서 [math(A=mathbb{Q})]로 정의한 [math(\bold{1}_{\mathbb{Q}}(x))]는 따로 디리클레 함수(Dirichlet Function)[19]라는 이름으로 불린다.
한편 [math(A=mathbb{N})]으로 정의한 [math(\bold{1}_{\mathbb{N}}(x))]는 멱등함수이다.
* 혹 함수 (bump Function)
[math(\mathrm{\Psi}(x)=\bold{1}_{\{x:\|x\|<1\}}e^{-\frac{1}{1-x^2}})]
시험 함수(test function)라고도 하며, 분포(distribution)에 속하는
디랙 델타 함수를 정의하는 데 쓰인다.
- 바쁜 비버 함수 (busy beaver function)
위 함수들에 대한 이론이나 적용은 관련 서적을 참고하기 바란다.
[1]
대수함수를 '다항함수에 사칙연산과 거듭제곱근 연산을 유한 번 적용해 얻는 함수'로 정의하는 것은 흔한 오개념 중 하나이다. 거듭제곱근으로 나타낼 수 없는 대수함수로는 [math(x^5+x+a=0)]의 실근을 나타내는 브링 근호(Bring radical) [math(\mathrm{BR}(a))]같은 함수들이 있다.
[2]
이 3개는 고등학교 2학년 수학1에 다 들어있다.
[3]
전술한 소수 계량 함수같이
정수론의 성격이 짙은 함수는 따로
산술함수라고 불린다.
[4]
시그넘 함수(signum Function)라고도 한다.
[5]
가령 [math(\mathrm{sgn}(1-i))]의 값은 [math(\dfrac{1-i}{\sqrt{\Re(1-i)^2+\Im(1-i)^2}}=\dfrac{1-i}{\sqrt{2}})]가 된다.
[6]
한편으로는 이 '고장난 부호 함수'에 흥미로운 점이 있는데, [math(0)]이 아닌 복소수의 함숫값은 반드시
단위원 위의 점이라는 것이다. 사실 복소수에서도 부호 함수의 작동 방식은 비슷한데, 실수에서는 수가 양 또는 음의 방향인가를 절댓값이 [math(1)]인 수로 나타내고, 복소수에서는 복소수가 향하는 방향(또는 편각)을 가지고 절댓값이 [math(1)]인 수로 나타낸다.
[7]
[math(W(x))]는
람베르트 W 함수이다.
[8]
이 함수는 특수한 경우([math(P_n(x))]에서 [math(n)]이 정수일 때)에서는 다항식 꼴이 된다.
[9]
이 역시 특수한 경우에 한해서 대수함수와 삼각함수의 조합으로 나타낼 수 있다.
[10]
五次函數(5차함수, quintic function)가 아니고 誤差函數(error function)이다.
[11]
[math(\displaystyle {e^x\over x})]의 부정적분에 대응한다.
[12]
[math(\displaystyle {1\over\ln x})]의 부정적분에 대응한다.
[13]
위의 로그 적분이 피적분함수의 특이점을 포함하기 때문에 골치 아픈 점을 피해가기 위한 함수다.
[14]
각각 [math(\displaystyle{\cos x\over x})]와 [math(\displaystyle{\sin x\over x})]의 부정적분에 대응한다.
[15]
각각 [math(\displaystyle{\sinh x\over x})]와 [math(\displaystyle{\cosh x\over x})]의 부정적분에 대응한다.
[16]
[math(\gamma)]는
오일러-마스케로니 상수이다.
[17]
각각 [math(\sin x^2)]와 [math(\cos x^2)]의 부정적분에 대응한다.
[18]
[math(\theta(x))] 대신 [math(H(x), u(x))] 등을 쓰기도 한다. [math(u(x))]의 형태는
라플라스 변환을 다룰 때 자주 등장하는 형태이다.
[19]
실해석학에서 '완전 불연속 함수'와 그에 대한 적분을 배울 때 나오는 녀석이다.