최근 수정 시각 : 2023-01-07 19:33:38

다가 함수

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin:0 -10px -5px;min-height:2em"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수( 변분법) · 다변수 ( 동차 · 숨은 함수( 다가 함수)) · 그래프 · 대칭 · 증감표 · 극값 · 절편 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리·토픽 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙 · 스펙트럼 정리
극한 엡실론-델타 논법 · 수열의 극한 · 수렴 ( 균등수렴) · 발산 · 부정형 · 어림( 유효숫자) · 근방 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리·토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열· 급수 규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리·토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미적분 미분 도함수 ( 편도함수) · 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점) · 미분형식 · 미분방정식 ( 풀이) · [math(boldsymbolnabla)] · 라그랑주 승수법
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 정적분 ( 예제) · 이상적분 · 중적분 ( 선적분 · 면적분 · 야코비안) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리·토픽 미적분의 기본정리 ( 선적분의 기본정리) · 평균값 정리 ( 롤의 정리) · 스토크스 정리 ( 발산 정리 · 그린 정리) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 · 아다마르 변환) · 2학년의 꿈 · 리시 방법 · 야코비 공식
실해석 실수 · 좌표계 · 측도론 ( 측도 · 르베그 측도) · 실직선 · 유계( 콤팩트성) · 칸토어 집합 · 비탈리 집합
복소해석 복소수( 복소평면) · 편각 · 코시-리만 방정식
정리·토픽 오일러 공식 ( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 해석기하학 · 미분기하학 · 해석적 정수론 ( 소수 정리 · 리만 가설미해결) · 벡터 미적분학 · 확률론 ( 확률변수 · 중심극한정리) · 수치해석학
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 카오스 이론 · 오일러 방정식 · 퍼지 논리 · 거리함수 · 분수계 미적분학 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학
난제 양-밀스 질량 간극 가설 · 나비에 스토크스 방정식의 해 존재 및 매끄러움 }}}}}}}}}

1. 개요2. 심화
2.1. 분지 절단
3. 예시4. 관련 문서

1. 개요

/ multivalued function

일반적으로, 함수는 정의역의 한 값에 한 가지 값만이 대응한다. 예를 들어 항등함수 [math(\mathrm{id}_\mathbb R)]의 경우, [math(\mathrm{id}_\mathbb R(1)=1)] 한 가지 값만을 갖는다. 그런데 복소해석학을 배우다 보면, 여러 가지 값을 갖는 함수가 필요하다. 예를 들어, 편각 [math(\arg)]는 [math(\arg(1+i)=\pi/4, 9\pi/4,\cdots)]로 무수히 많은 값을 갖는다. 이렇게 여러 값을 갖는 함수를 다가 함수라고 한다. 명칭은 '함수'이지만, 함수의 기본적인 정의에 어긋나므로 진짜 함수는 아니다.

2. 심화

정의역이 [math(X)]이고 치역이 [math(Y)]인 다가 함수는, 실질적으로 [math(X\to\mathcal P(Y)\backslash \emptyset)][1]라고 생각할 수 있다. 즉, 정의역의 원소를 치역의 원소들의 모임, 즉 치역의 부분집합에 대응시키는 함수로 보는 것이다. 이 경우, 로그 함수는 다음과 같이 생각할 수 있다.

[math(\log(x)=\{y\in\mathbb C|e^y=x \})]

이때 다가 함수 [math(f:X\to \mathcal P(Y)\backslash \emptyset)]의 주요값은 [math(\forall x\in X, g(x)\in f(x))]인 함수 [math(g:X\to Y)]로 정의된다.
선택 공리 하에서, 다가 함수의 주욧값은 항상 존재하는데, [math(f:X\to \mathcal P(Y)\backslash \emptyset)]의 치역 [math(\mathrm{range}(f))]의 선택함수 [math(C)]와 [math(f)]의 합성 [math(C\circ f)]가 [math(f)]의 주요값이기 때문이다.

2.1. 분지 절단

복소 해석학에서 로그 함수를 정의할 때, [math(\operatorname{Arg}(\operatorname{Log}z)\in(-\pi, \pi])]이도록 한다. 이렇게 편각에 따라 주요값을 정하는 것을 분지 절단(branch cut)이라고 한다.

3. 예시

대부분의 다가 함수는 음함수의 역함수에서 나온다.

4. 관련 문서



[1] [math(\mathcal P)]는 멱집합이다.