최근 수정 시각 : 2022-01-31 16:04:09

페르마 소수

정수론
Number Theory
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
공리
페아노 공리계 · 정렬 원리 · 수학적 귀납법
산술
나눗셈 약수·배수 배수 · 약수( 소인수) · 소인수분해( 목록) · 공배수 · 공약수 · 최소공배수 · 최대공약수
약수들의 합에 따른 수의 분류 완전수 · 부족수 · 과잉수 · 친화수 · 사교수 · 부부수 · 반완전수 · 불가촉 수 · 괴짜수
정리 베주 항등식 · 산술의 기본정리 · 나눗셈 정리
기타 유클리드 호제법 · 서로소
디오판토스 방정식 페르마의 마지막 정리 · 피타고라스 세 쌍 · 버츠와 스위너톤-다이어 추측(미해결)
모듈러 연산
잉여역수 · 2차 잉여 · 기약잉여계 · 완전잉여계 · 중국인의 나머지 정리 · 합동식 · 페르마의 소정리 · 오일러 정리 · 윌슨의 정리
소수론
수의 분류 소수 · 합성수 · 메르센 소수 · 쌍둥이 소수( 사촌 소수 · 섹시 소수) · 페르마 소수 · 레퓨닛 수
분야 대수적 정수론 · 해석적 정수론
함수 뫼비우스 함수 · 소수 계량 함수 · 소인수 계량 함수 · 약수 함수 · 오일러 파이 함수 · 폰 망골트 함수· 체비쇼프 함수 · 소수생성다항식
정리 그린 타오 정리 · 페르마의 두 제곱수 정리 · 디리클레 정리 · 소피 제르맹의 정리 · 리만 가설(미해결) · 골드바흐 추측(미해결)( 천의 정리) · 폴리냑 추측(미해결) · 소수 정리
기타 에라토스테네스의 체 · 윌런스의 공식
}}}}}}}}} ||

1. 개요2. 예시3. 여담4. 관련 문서

1. 개요

Fermat prime number
피에르 드 페르마가 처음으로 연구한 수 형식으로, 음이 아닌 정수 n에 대해 [math(F_n = 2^{2^n}+1)] 형태로 나타나는 숫자를 의미한다.

2. 예시

[math(F_0 = 2^1+1 = 3)]
[math(F_1 = 2^2+1 = 5)]
[math(F_2 = 2^4+1 = 17)]
[math(F_3 = 2^8+1 = 257)]
[math(F_4 = 2^{16}+1 = 65537)]
...

1637년, 페르마는 위 형식으로 나오는 숫자들은 소수일 것이라 추측했고, n=0~4까지는 5개는 소수가 맞지만 1732년 레온하르트 오일러라는 수학자가 n=5일때 다음과 같은 소인수분해 결과를 내놓으면서 반증했다.

[math(F_5 = 2^{32}+1 = 4294967297 = 641\times6700417 )]

n이 6일때는 1855년에 인수분해 결과를 내놓았다.
[math(F_6 = 2^{64}+1 = 18446744073709551617 = 274177\times67280421310721 )]

n=7~11일때 까지는 컴퓨터가 발달한 1970년대 이후에 발견되었다.
n=5,6,7,8일때까지는 2개의 수로 소인수분해되며 9일때는 3개, 10일때는 4개, 11일때는 5개의 수로 소인수분해된다.

21세기 들어, n=32 까지는 소수가 아닌 합성수라는 걸 밝혀냈지만[1][2] 그 이후로 영영 소수가 없는 건지, 아니면 발견하지 못한 소수가 무수히 많이 있는지는 명확히 증명되지 않은 미해결 문제다. 꾸준히 거대한 소수가 발견되는 메르센 소수와는 달리, 저 5개의 수 외에는 더이상 페르마 소수가 존재하지 않을 것이라고 부정적인 예측을 하는 수학자가 증가하고 있다. 당장 페르마 소수를 메르센 소수와 크기를 비교할 시 M(100,000,000)가 F(26)~F(27) 사이의 값을 가져서 기하급수적으로 늘어난다는 점도 있다.

한편, 관련 정리로 다음 수열의 귀납적 정의가 성립함을 쉽게 증명할 수 있다.
[math(\displaystyle F_{n+1} = \Pi_{i=0}^{n}F_i+2)]
따라서 모든 페르마 수는 고유한 소인수만을 가진다. 다시 말해, 서로 다른 페르마 수는 모두 서로소이다.

여담으로, 작도 가능성과 관련이 깊은 수다. 정n각형이 작도 가능하다는 것은 다음과 동치이다.
[math(n=2^mp_1p_2\cdots p_k)]
여기서 [math(p_1,p_2,\cdots,p_k)]가 바로 서로 다른 페르마 소수이다.
간단히 말해, 정5각형이나, 정17각형, 정257각형, 정65537각형이 작도 가능하며, 이의 2배수 및 페르마소수 곱인 정다각형도 작도 가능하다. 정17각형의 작도 가능성은 가우스가 증명하였으며, 같은 방법으로 정257각형, 정65537각형이 작도 가능함도 증명하였다.

3. 여담

[math(F_5)] 이후의 수들이 모두 합성수로 판명되자, 페르마 소수가 더 있을거라는 믿음을 포기하고 5개 이외에는 더 이상 소수가 없는 게 아니냐고 생각하는 회의적인 수학자들이 늘고 있다. 그렇다고 하더라도 아직은 페르마 소수가 추가로 존재하는지의 여부가 증명되지 않은 상태로, 이는 큰 떡밥이기에 여전히 연구하는 수학자들도 많다. '페르마 소수가 더 많이 존재한다' 또는 '더 이상 존재하지 않는다'는 수학적 증명을 해낸다면, 충분히 필즈상을 탈 만한 업적에 해당된다. 소소하게는 미확인 페르마 수의 소인수를 찾아내어 합성수임을 밝혀 내거나, 소인수분해가 덜 된 수를 완전히 분해하는 것들도 충분한 연구 대상이기도 하다.

이 사이트에서 페르마 수의 소인수분해 진행상황을 확인할 수 있다. 2020년 기준으로 2020년 10월 5일에 [math(7\times2^{18233956}+1)]이 [math(F_{18233954})]의 소인수라는 것이 밝혀졌다. 현재까지 밝혀진 페르마 수의 가장 큰 소인수다.

4. 관련 문서



[1] 모든 n>32인 페르마 수가 합성수인지 확인이 되지 않았다는 뜻은 아니다. 예를 들어 n=36은 1886년에, n=38은 1903년에 합성수라는 것이 이미 밝혀졌다. 하지만 n<=32까지의 모든 수가 확인된 것에 비해 n=33, 34, 35, 40, 41 등 아직 합성수인지 확인이 되지 않은 페르마 수가 무수히 많이 존재한다. [2] 완전히 소인수분해가 된 것은 2021년 기준으로 n=11 까지다.