최근 수정 시각 : 2022-05-09 14:54:48

롤의 정리

해석학 · 미적분학
Analysis · Calculus
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
{{{#!wiki style="letter-spacing: -1px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례 ) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수 · 다변수 ( 동차 · 숨은 함수( 다가 함수 )) · 그래프 · 대칭 · 증감표 · 극값 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리 · 토픽 좌표계 · 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙
극한 부정형 · 어림( 유효숫자 ) · 근방 · 수열의 극한 · 엡실론-델타 논법 · 수렴 ( 균등수렴 ) · 발산 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리 · 토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열
· 급수
규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람 ) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해 ) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리 · 토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미분 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 도함수 ( 편도함수 ) · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점 ) · 미분형식 · 미분방정식 ( 풀이 ) · [math(boldsymbolnabla)] · 라그랑주 승수법
정리 · 토픽 평균값 정리 ( 롤의 정리 ) · 스토크스 정리 ( 발산 정리 ) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 ) · 아다마르 변환
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제 ) · 치환적분 · 정적분 ( 예제 ) · 이상적분 · 중적분 ( 선적분 · 면적분 ) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리 · 토픽 미적분의 기본정리 · 2학년의 꿈 · 리시 방법 · 야코비안
실해석 측도론 ( 측도 · 르베그 측도 ) · 유계( 콤팩트성 ) · 칸토어 집합 · 비탈리 집합
정리 · 토픽
복소해석 복소평면 · 편각 · 코시-리만 방정식
정리 · 토픽 오일러 공식 ( 드 무아브르 공식 ) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 수치해석학 ( FEM ) · 미분기하학 · 해석기하학 · 해석적 정수론 ( 소수 정리 ) · 확률론 ( 중심극한정리 )
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 리만 가설미해결 · 카오스 이론미해결 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학 }}}}}}}}}}}}


1. 개요2. 증명3. 활용

[clearfix]

1. 개요

Rolle's theorem
미분 가능한 함수에 대한 정리로 12세기 인도의 바스카라에 의해 처음 발견되어 17세기 미셸 롤(Michael Rolle)에 의해 처음으로 증명되었다. 미분 가능한 함수에서 같은 함수 값을 가지는 두 점 [math(a)], [math(b)]가 있을 때 구간 [math(\left(a,b\right))]에서 접선의 기울기(= 미분계수)가 [math(0)]이 되는 점이 적어도 하나 있다는 내용을 담는다. 즉 더욱 엄밀하게 설명하면 다음과 같다.
함수 [math(f:\left[a, b\right] \rightarrow \mathbb R)]가
1) 닫힌구간 [math(\left[a,b\right])]에서 연속이고
2) 열린구간 [math(\left(a,b\right))]에서 미분가능하며
3) [math(f\left(a\right)=f\left(b\right))]이면,
[math(f'\left(c\right)=0)]을 만족하는 [math(c\in\left(a,b\right))]가 존재한다.

이를 기하학적으로 보면 이렇다. 함수 [math(f\left(x\right))]가 닫힌구간 [math(\left[a,b\right])]에서 연속이고 열린구간[math(\left(a,b\right))]에서 미분가능할 때, 곡선 [math(y=f\left(x\right) \left(a\leq x\leq b \right) )]에서 접선의 기울기가 [math(0)]이 되는 점 [math(\left(c,f\left(c\right)\right))]가 적어도 1개 존재한다.

2. 증명

1. 함수 [math(f:\left[a, b\right] \rightarrow \mathbb R)]이 상수함수일 경우, 임의의 [math(x\in \left(a, b\right))]에 대해 [math(f'\left(x\right)=0)]이다.
따라서 [math(f'\left(c\right)=0)]을 만족하는 [math(c\in\left(a,b\right))]가 존재한다.

2. 함수 [math(f:\left[a, b\right] \rightarrow \mathbb R)]이 상수함수가 아닐 경우, [math(f\left(a\right)=f\left(b\right)\ne f\left(x\right))]인 [math(x\in \left(a, b\right))]가 존재한다.
그런데 [math(f)]는 닫힌구간 [math(\left[a,b\right])]에서 연속이므로 최대·최소의 정리에 의해 이 구간내에서 최댓값과 최솟값을 가진다.
(ⅰ) [math(f\left(a\right)=f\left(b\right)< f\left(x\right))]인 [math(x\in \left(a, b\right))]가 존재한다고 하자.[1] 그러면 [math(f)]는 열린구간 [math(\left(a, b\right))]에서 최댓값을 가져야 한다. [math(x=c)]에서 최댓값 [math(f\left(c\right))]를 가진다고 하면, 임의의 [math(x\in \left[a, b\right])]에 대해 [math(\displaystyle f\left(x\right)-f\left(c\right)\leq 0)]이다. 그러면 다음이 성립한다.

[math(\displaystyle\lim_{x\to c-}\frac{f(x)-f(c)}{x-c}\geq0)]

[math(\displaystyle\lim_{x\to c+}\frac{f(x)-f(c)}{x-c}\leq0)]

그런데 [math(x=c)]에서 [math(f)]는 미분가능하므로 두 값이 같아야 한다. 따라서 [math(f'\left(c\right)=0)]이 성립한다.
(ⅱ) [math(x=c)]에서 최솟값 [math(f\left(c\right))]를 가질 때, 같은 방법으로 [math(f'\left(c\right)=0)]이 성립한다.

3. 활용

롤의 정리를 일반화하면 평균값의 정리[2]로 나타낼 수 있다. 정확히 말하면 평균값의 정리를 미분계수가 0인 경우에 한정한 특별한 경우가 롤의 정리라고 할 수 있다.

대학에서 미적분학을 배운다면 롤의 정리는 실근의 유일성(uniqueness)을 증명할 때 쓴다. [3] 간단히 과정을 서술하면 근의 개수를 판별할 함수를 f라 하자. 사잇값의 정리를 이용해 실근의 존재함을 보인 후 f의 실근이 a,b (단, a<b)라고 가정하자. 여기서 f는 [a, b]에서 연속이면서 (a, b)에서 미분가능한 함수여야 한다. 이 때, 롤의 정리에 의해 (a, b)에서 f'의 값이 0인 점이 존재해야 한다. 이때 구간 (a,b)에 속하는 c에 대해 f'(c)=0이 아님을 보이면 귀류법에 의해 f가 2개 이상의 실근을 가질 수 없음을 보일 수 있다.

롤의 정리를 이용하여 로피탈의 정리를 증명할 수 있다. 롤의 정리를 이용하지 않으면 난이도가 상승하므로, 기초 미적분학 수준에서는 롤의 정리를 보조정리로 사용하여 증명하게 된다.


[1] [math(f\left(a\right)=f\left(b\right)> f\left(x\right))]인 [math(x\in \left(a, b\right))]가 존재하는 경우는 최솟값을 이용해 증명할 수 있다. [2] 미분가능할 때 평균변화율=미분계수 일때가 적어도 하나이상 [3] 중근을 갖는 경우를 제외한다. 이는 Root Unique에 포함되지 않는다.