최근 수정 시각 : 2023-01-07 19:29:49

비례·반비례

해석학· 미적분학
Analysis · Calculus
{{{#!wiki style="margin:0 -10px -5px;min-height:2em"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=#8f76d6> 함수 합성 · 항등원 · 역원 · 멱함수( 비례·반비례) · 초등함수( 대수함수 · 초월함수) · 특수함수 · 범함수( 변분법) · 다변수 ( 동차 · 숨은 함수( 다가 함수)) · 그래프 · 대칭 · 증감표 · 극값 · 절편 · 연속 · 매끄러움 · 계단형 · 미끄럼틀형 · 볼록/오목 · 닮은꼴 함수 · 병리적 함수 · 해석적 연속 · 로그함수 · 지수함수 · 삼각함수
정리·토픽 중간값 정리 · 최대·최소 정리 · 부동점 정리 · 오일러 동차함수 정리 · 립시츠 규칙 · 스펙트럼 정리
극한 엡실론-델타 논법 · 수열의 극한 · 수렴 ( 균등수렴) · 발산 · 부정형 · 어림( 유효숫자) · 근방 · 점근선 · 무한대 · 무한소 · 스털링 근사
정리·토픽 로피탈의 정리 · 슈톨츠-체사로 정리
수열· 급수 규칙과 대응 · 단조 수렴 정리 · 멱급수 · 테일러 급수 ( 일람) · 조화급수 · 그란디 급수 · 망원급수 ( 부분분수분해) · 오일러 수열 · 베르누이 수열 · 파울하버의 공식 · 리만 재배열 정리
정리·토픽 바젤 문제 · 라마누잔합 · 0.999…=1 · 콜라츠 추측미해결
미적분 미분 도함수 ( 편도함수) · 도함수 일람 · 차분 · 유율법 · 변화량 · 변분법 · 곱미분 · 몫미분 · 연쇄 법칙 · 역함수 정리 · 임계점 ( 변곡점 · 안장점) · 미분형식 · 미분방정식 ( 풀이) · [math(boldsymbolnabla)] · 라그랑주 승수법
적분 역도함수 일람 · 부분적분 ( LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 정적분 ( 예제) · 이상적분 · 중적분 ( 선적분 · 면적분 · 야코비안) · 르베그 적분 · 스틸체스 적분 · 코시 주요값
정리·토픽 미적분의 기본정리 ( 선적분의 기본정리) · 평균값 정리 ( 롤의 정리) · 스토크스 정리 ( 발산 정리 · 그린 정리) · 라플라스 변환 · 푸리에 해석 ( 푸리에 변환 · 아다마르 변환) · 2학년의 꿈 · 리시 방법 · 야코비 공식
실해석 실수 · 좌표계 · 측도론 ( 측도 · 르베그 측도) · 실직선 · 유계( 콤팩트성) · 칸토어 집합 · 비탈리 집합
복소해석 복소수( 복소평면) · 편각 · 코시-리만 방정식
정리·토픽 오일러 공식 ( 오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
여타 하위 학문 해석기하학 · 미분기하학 · 해석적 정수론 ( 소수 정리 · 리만 가설미해결) · 벡터 미적분학 · 확률론 ( 확률변수 · 중심극한정리) · 수치해석학
기타 뉴턴-랩슨 방법 · 디랙 델타 함수 · 카오스 이론 · 오일러 방정식 · 퍼지 논리 · 거리함수 · 분수계 미적분학 · merry=x-mas
응용 수리물리학 · 수리경제학( 경제수학) · 공업수학
난제 양-밀스 질량 간극 가설 · 나비에 스토크스 방정식의 해 존재 및 매끄러움 }}}}}}}}}

1. 개요
1.1. 정비례1.2. 반비례
2. 비례의 기호 ∝3. 여담

1. 개요

멱함수의 일종으로, 두 변수가 있을 때 한 변수가 2배, 3배 되면 다른 한 변수도 2배, 3배 되는 경우 그 두 변수는 (정)비례 관계에 있다고 한다.[1] 반면 한 변수가 2배, 3배 될 때 다른 변수가 [math(1 \over 2)]배, [math(1 \over 3)]배 된다면 두 변수는 반비례 관계에 있다고 한다.

식으로 나타내자면 [math(a)]가 상수일 때 [math(y=ax)]를 만족시키는 경우 두 변수 [math(x, y)]는 정비례 관계에 있고, [math(\displaystyle y=\frac{a}{x}=ax^{-1})]를 만족시키는 경우 [math(x, y)]는 반비례 관계에 있다. 간혹 분수만 나오면 무조건 반비례라고 써버리는 사람도 있는데, 분모가 비례상수일 경우는 정비례다. 다시 말해, 비례상수 그 자체는 비례·반비례 여부에 아무 영향을 주지 않는다. 예를 들어 [math(\displaystyle y=\frac{x}{2}={1 \over 2}{x})]는 비례 관계이다. 단, 하나의 예외로 비례상수가 0일 경우 비례·반비례 관계가 무너진다.[2]

1.1. 정비례

두 변수 [math(x, y)]가 정비례한다(혹은 비례한다)고 함은 다음을 만족시키는 함수 [math(f)]에 대하여 [math(y=f\left(x\right))]를 만족시킨다는 뜻이다.
임의의 [math(k, x)]에 대하여 [math(f\left(kx\right)=kf\left(x\right))]
이 정의를 이용해 정비례하는 함수 [math(f)]를 묘사하는 식을 구할 수 있다. [math(a = f(1))]로 두고 [math(x = 1)]을 대입하면 [math(f(k) = kf(1) = ak)], 혹은 [math(f(x) = ax)]. 즉 정비례 관계의 함수는 상수항이 없는 일차함수이다.

비례관계의 정의는 역함수를 정의할 때 사용되기도 한다. 가령 지수함수를 [math(f\left(x\right)=x)]에 대칭시키면 로그함수가 튀어나온다.

1.2. 반비례

두 변수 [math(x, y)]가 반비례한다고 함은 다음을 만족시키는 함수 [math(f)]에 대하여 [math(y=f\left(x\right))]를 만족시킨다는 뜻이다.
0이 아닌 임의의 [math(k, x)]에 대하여 [math(\displaystyle f\left(kx\right)=\frac{f\left(x\right)}{k}=k^{-1}f\left(x\right))]이다.
즉, 반비례는 역수에 비례한다는 뜻과 같은 말이며, 반비례 함수는 분수함수이다.

이때, 반비례 함수를 부정적분하면 자연로그가 나오며[3], 1에서 자연로그의 밑 [math(e)]까지 정적분을 하면 1이 나온다.

반비례 함수의 그래프는 쌍곡선이다. 이 식을 이용해 쌍곡선의 방정식으로 변형시킬 수 있다.

반비례 관계의 항 중 분모가 자연수인 항을 모조리 더한 것을 ' 조화급수'라고 하며 여기서 자연로그를 뺀 부분을 모두 더하면 오일러-마스케로니 상수를 구할 수 있다.

2. 비례의 기호 ∝

두 변수 [math(x)], [math(y)]가 비례함을 다음과 같이 나타낸다.

[math(y \propto x)]

비슷하게 두 변수 [math(x)], [math(y)]가 반비례함을 다음과 같이 나타낸다.

[math(y \propto \dfrac{1}{x})]

3. 여담

  • (2015 개정 교육과정 기준으로) 본격적으로 배우는 시기는 중학교 1학년 수학이며, 원래는 초등학교 6학년 수학으로 잠시 내려온 적도 있었으나 한 차례 시도만 하고 환원되었다. 이를 활용한 개념을 처음 배우는 때는 중학교 1학년 과학 시간에 나오는 보일 법칙 샤를 법칙이다. 그러나 2015 개정 교육과정부터는 하향평준화가 대대적으로 이어지면서 학자 이름을 생략하고[4] 그냥 '~수록 커진다/작아진다'로 바꿔 버렸다.


[1] 이 함수는 유리함수도 관계가 있다. [2] [math(0x = \dfrac{0}{x} = 0)] [3] [math(\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\ln_{}t=t^{-1})] [4] 원리는 기억 안 나고 학자 이름만 떠돈다는 사유에서 생략했다고 한다. 중학교 과정에서 학자 이름을 생략한 건 좋았다는 평가를 받는다. 어차피 화학Ⅱ에서는 보일-샤를로 배운다.화2러들도 이상기체상태방정식에서 비례/반비례관계를 따지기때문에 학자이름 안 외운다. 다만, 문제는 비례/반비례까지 그렇게 했다는 것.