최근 수정 시각 : 2024-01-11 18:16:18

사이클로이드

파선에서 넘어옴

파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
싸이크로이드에 대한 내용은 비크로이드 문서
번 문단을
부분을
, 스트리트 파이터 EX의 등장인물에 대한 내용은 사이클로이드(스트리트 파이터 EX) 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
1. 개요2. 방정식
2.1. 접선의 방정식2.2. 곡선의 길이2.3. 넓이
3. 사이클로이드의 변형
3.1. 하이포사이클로이드
3.1.1. 방정식
3.2. 에피사이클로이드
3.2.1. 방정식
4. 물리학적 문제5. 관련 문서

1. 개요

[1] / cycloid

사이클로이드 또는 파선은 을 직선 위에서 굴렸을 때, 원 위의 한 정점이 그리는 자취를 말한다. ' 굴렁쇠선'이라고도 한다.
파일:사이클로이드.svg
사이클로이드의 정의를 잘 나타내는 그림

2. 방정식


파일:나무_사이클로이드_유도.png

위 그림과 같이 중심이 [math(\mathrm{C})]이고, 반지름 [math(r)]인 원이 [math(x)]축과 접하면서 굴러간다고 생각해보자. 원 위의 점 [math(\mathrm{P})]가 초기엔 원점에 있었다 가정하고, 원의 중심을 회전축으로 하여 [math(\theta)]만큼 회전하여 위 그림처럼 된 경우라고 생각해보자.

우선, 점 [math(\mathrm{H})]는 점 [math(\mathrm{P})]에서 [math(x)]축에 내린 수선의 발, 점 [math(\mathrm{I})]는 점 [math(\mathrm{C})]에서 [math(x)]축에 내린 수선의 발, 점 [math(\mathrm{K})]는 점 [math(\mathrm{P})]에서 선분 [math(\mathrm{CI})]에 내린 수선의 발이다.

점 [math(\mathrm{P})]의 [math(y)]좌표는 다음과 같다.

[math(\displaystyle \begin{aligned} y=\overline{\mathrm{CI}}-\overline{\mathrm{CK}}&=r(1-\cos{\theta}) \end{aligned} )]

[math(x)]좌표는 조금 구하기 까다로운데, [math(\overline{\mathrm{OI}})]가 [math(\theta)]만큼 회전하면서 원호가 휩쓸고 간 길이임을 이해해야 한다.

[math(\displaystyle \begin{aligned} x=\overline{\mathrm{OI}}-\overline{\mathrm{HI}}&=r(\theta-\sin{\theta}) \end{aligned} )]

따라서 사이클로이드의 [math(\theta)]의 매개변수 방정식은 다음과 같다.

[math(\displaystyle \begin{aligned} x&=r(\theta-\sin{\theta}) \\ y&=r(1-\cos{\theta}) \qquad (0 \leq \theta \leq 2 \pi) \end{aligned} )]

참고로, 매개변수 방정식에서 [math(\theta)]를 소거하면 아래와 같은 복잡한 방정식을 얻는다.

[math(\displaystyle \left | 2 \pi \left [ \left ( \frac{1}{2} - \frac{x}{2 \pi r} \right ) - 1 \right ] + \frac{x}{r} \right | = \arccos{\left (1 - \frac{y}{r} \right )} - \sqrt{\frac{2y}{r} - \frac{y^2}{r^2}})]

이를 [math(xy)]평면상 닫힌 구간 [math([0,\,4\pi r])]에서 그래프로 나타내면 아래와 같다.

파일:나무_사이클로이드_그래프_재수정.png
사이클로이드는 [math(x= 2 \pi r)]를 기준으로 주기적이다. 이것은

[math(\begin{aligned}\displaystyle x(\theta+2 n \pi)&=x(\theta)+2 n \pi r \\ y(\theta)&=y(\theta + 2n\pi)\end{aligned})]

가 성립하기 때문이다. [math(n)]은 정수이다.

2.1. 접선의 방정식

#!wiki style="text-align: center;"
[math(\displaystyle \frac{\displaystyle \frac{dy}{d \theta}}{\displaystyle \frac{dx}{d \theta}}=\frac{\sin{\theta}}{1-\cos{\theta}} =\cot{\frac{\theta}{2}} )] }}}
먼저 접선의 기울기는 위와 같이 매개변수 방정식의 미분법으로 구할 수 있다. 한편 접선은 점

[math((r(\theta-\sin{\theta}),\;r(1-\cos{\theta})))]

를 지나므로 접선의 방정식은 다음과 같다.

[math(\displaystyle y= \cot{\frac{\theta}{2}}[x-r(\theta-\sin{\theta}) ]+r(1-\cos{\theta}) )]

2.2. 곡선의 길이

한 주기([math(0 \leq \theta \leq 2 \pi)])의 곡선의 길이는 다음의 적분으로 구할 수 있다.

[math(\displaystyle \int_{0}^{2 \pi} \sqrt{\left( \frac{dx}{d \theta} \right)^{2}+\left( \frac{dy}{d \theta} \right)^{2}}\,d \theta)]

이때,

[math(\displaystyle \frac{dx}{d \theta}=r (1-\cos \theta) \qquad \qquad \frac{dy}{d \theta}=r\sin{\theta})]

이므로

[math(\begin{aligned}\displaystyle\sqrt{\left( \frac{dx}{d \theta} \right)^{2}+\left( \frac{dy}{d \theta} \right)^{2}} &=r \sqrt{(1-\cos{\theta})^{2}+\sin^{2}{\theta}} \\&=r \sqrt{2-2\cos{\theta}} \\&=2r \sqrt{\sin^{2}{\frac{\theta}{2} } } \\&=2r \sin{\frac{\theta}{2}} \end{aligned})]

근호를 벗길 수 있는 이유는 한 주기([math(0 \leq \theta \leq 2 \pi)])의 곡선의 길이를 구하고 있기 때문이다. 이상에서 구하는 곡선의 길이는 다음과 같다.

[math(\displaystyle 2r \int_{0}^{2\pi} \sin{\frac{\theta}{2}}\,d \theta=8r)]

2.3. 넓이

한 주기의 사이클로이드 곡선과 [math(x)]축이 둘러싸는 넓이를 구해보자. 미소 면적은 [math(y)]와 [math(x)]축상의 미소 길이 [math(dx)]의 곱인

[math(\displaystyle dA=y\,dx)]

로 놓을 수 있다.

[math(\displaystyle dx=r(1-\cos{\theta})\,d \theta)]

이고 적분 구간은 [math(0 \leq \theta \leq 2 \pi)]이므로 넓이는 다음과 같다.

[math(\displaystyle A=r^{2}\int_{0}^{2\pi}(1-\cos{\theta})^{2} \,d \theta=3 \pi r^{2})]

3. 사이클로이드의 변형

3.1. 하이포사이클로이드

하이포사이클로이드(hypocycloid)는 사이클로이드의 변형의 한 종류로서, 사이클로이드가 직선상에서 굴린 원 위의 한 점의 자취를 나타낸다면, 하이포사이클로이드는 어떤 원에 내접하면서 원호상에서 굴러가는 더 작은 원 위의 한 점의 자취이다. 아래의 그림이 이 설명을 잘 나타내고 있다.
파일:하이포사이클로이드.svg
하이포사이클로이드의
정의를 잘 나타내는 그림

3.1.1. 방정식


파일:나무_하이포사이클로이드_수수수정.png

위 그림과 같이 큰 원의 반지름을 [math(R)], 작은 원의 반지름을 [math(r)]라 하자. 편의상 점 [math(\mathrm{P})]는 큰 원과 양의 [math(x)]에 대하여, [math(x)]축과 교점인 곳에 있었다고 하자.(위의 정의 그림 참고.) 선분 [math(\mathrm{QK})]는 [math(x)]축과 평행하며, 작은 원의 중심을 [math(\mathrm{Q})]라 하면, [math(\overline{\mathrm{OQ}}=\overline{\mathrm{OL}}-\overline{\mathrm{QL}}=R-r)]이므로

[math(\displaystyle \begin{aligned} \overline{\mathrm{OI}}&=(R-r)\cos{\theta} \\ \overline{\mathrm{IQ}}&=(R-r)\sin{\theta} \end{aligned})]

이다. [math(\angle \mathrm{KQP} \equiv \varphi )]라 하면, [math(\mathrm{P})]의 [math(x)]좌표와 [math(y)]좌표는 각각 [math(\overline{\mathrm{OH}})], [math(\overline{\mathrm{HP}})]이므로

[math(\displaystyle \begin{aligned} x&=\overline{\mathrm{OI}}+\overline{\mathrm{JP}} \\ y&=\overline{\mathrm{IQ}}-\overline{\mathrm{QJ}} \end{aligned})]

이다. [math(\mathrm{H})], [math(\mathrm{I})]는 각각 [math(\mathrm{P})], [math(\mathrm{Q})]에서 [math(x)]축에 내린 수선의 발이고, [math(\mathrm{J})]는 점 [math(\mathrm{P})]에서 선분 [math(\mathrm{IQ})]에 내린 수선의 발이다. 따라서 [math(P)]의 좌표는 다음과 같다.

[math(\displaystyle \begin{aligned} x&=(R-r)\cos{\theta}+r\cos{\varphi} \\ y&=(R-r)\sin{\theta}-r\sin{\varphi} \end{aligned})]

그런데 위 상태에서 작은 원이 큰 원을 휩쓸고 간 호의 길이는

[math(\displaystyle r(\theta+\varphi))]

이고, 이것은 곧 [math(R \theta)]와 같아야 하므로

[math(\displaystyle R \theta=r(\theta+\varphi) \,\to\, \varphi=\frac{R-r}{r}\theta)]

이다. 즉, 하이포사이클로이드의 [math(\theta)]에 대한 매개변수 방정식은

[math(\displaystyle \begin{aligned} x&=(R-r)\cos{\theta}+r\cos{\left( \frac{R-r}{r}\theta \right)} \\ y&=(R-r)\sin{\theta}-r\sin{\left( \frac{R-r}{r}\theta \right)} \end{aligned})]

[math(R/r \equiv k)]라 하면,

[math(\displaystyle \begin{aligned} x&=r(k-1)\cos{\theta}+r\cos{[(k-1)\theta]} \\ y&=r(k-1)\sin{\theta}-r\sin{[(k-1)\theta]} \end{aligned})]


하이포사이클로이드의 모양은 [math(k)]의 값[2]에 따라 결정된다. 다음은 몇몇 경우에 대한 하이포사이클로이드를 나타낸 것이다. [math(k=4)]인 경우, 즉 첨점(尖點)이 4개인 경우는 특히 아스트로이드(astroid)라는 명칭이 붙어 있으며, 다음과 같이 표현된다.

[math(\begin{cases}x=R\cos^3 t\\y=R\sin^3 t\end{cases})]

[3]

파일:나무_하이포사이클로이드_종류_수정.png



파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r8에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r8 ( 이전 역사)
문서의 r ( 이전 역사)

3.2. 에피사이클로이드

에피사이클로이드(epicycloid)는 사이클로이드의 변형의 한 종류로서, 사이클로이드가 직선상에서 굴린 원의 한 점의 자취를 나타낸다면, 에피사이클로이드는 어떤 원이 다른 원에 외접하면서 그 원의 원호상에서 굴러가는 원 위의 한 점의 자취이다. 아래의 그림이 이 설명을 잘 나타내고 있다.
파일:에피사이클로이드.svg
에피사이클로이드의
정의를 잘 나타내는 그림

3.2.1. 방정식

파일:나무_에피사이클로이드.png

위 그림과 같이 반지름 [math(R)]의 원과, 그 원에 외접하는 반지름 [math(r)]의 원을 고려하자. 편의상 점 [math(\mathrm{P})]는 반지름 [math(R)]의 원과 양의 [math(x)]에 대하여, [math(x)]축과 교점인 곳에 있었다고 하자.(위의 정의 그림 참고.) 선분 [math(\mathrm{QK})]는 [math(x)]축과 평행하며, 작은 원의 중심을 [math(\mathrm{Q})]라 하면, [math(\overline{\mathrm{OQ}}=\overline{\mathrm{OL}}+\overline{\mathrm{LQ}}=R+r)]이므로

[math(\displaystyle \begin{aligned} \overline{\mathrm{OI}}&=(R+r)\cos{\theta} \\ \overline{\mathrm{IQ}}&=(R+r)\sin{\theta} \end{aligned})]

이다. [math(\angle \mathrm{KQP} \equiv \varphi )]라 하면, [math(\mathrm{P})]의 [math(x)]좌표와 [math(y)]좌표는 각각 [math(\overline{\mathrm{OH}})], [math(\overline{\mathrm{HP}})]이므로

[math(\displaystyle \begin{aligned} x&=\overline{\mathrm{OI}}+\overline{\mathrm{JP}} \\ y&=\overline{\mathrm{IQ}}-\overline{\mathrm{QJ}} \end{aligned})]

이다. [math(\mathrm{H})], [math(\mathrm{I})]는 각각 [math(\mathrm{P})], [math(\mathrm{Q})]에서 [math(x)]축에 내린 수선의 발이고, [math(\mathrm{J})]는 점 [math(\mathrm{P})]에서 선분 [math(\mathrm{IQ})]에 내린 수선의 발이다. 따라서 [math(P)]의 좌표는

[math(\displaystyle \begin{aligned} x&=(R+r)\cos{\theta}+r\cos{\varphi} \\ y&=(R+r)\sin{\theta}-r\sin{\varphi} \end{aligned})]

이다. 그런데 위 상태에서 반지름이 [math(r)]인 원은 반지름이 [math(R)]인 원의 원호를 휩쓸고 가는 길이는

[math(\displaystyle r[\pi-(\theta+\varphi) ])]

이고, 이것은 곧 [math(R \theta)]와 같아야 하므로

[math(\displaystyle R \theta=r[\pi-(\theta+\varphi) ] \,\to\, \varphi=\pi-\frac{R+r}{r}\theta)]

이다. 즉, 에피사이클로이드의 [math(\theta)]에 대한 매개변수 방정식은

[math(\displaystyle \begin{aligned} x&=(R+r)\cos{\theta}-r\cos{\left( \frac{R+r}{r}\theta \right)} \\ y&=(R+r)\sin{\theta}-r\sin{\left( \frac{R+r}{r}\theta \right)} \end{aligned})]

[math(R/r \equiv k)]라 하면,

[math(\displaystyle \begin{aligned} x&=r(k+1)\cos{\theta}-r\cos{[(k+1)\theta]} \\ y&=r(k+1)\sin{\theta}-r\sin{[(k+1)\theta]} \end{aligned})]


에피사이클로이드의 모양은 [math(k)]의 값[4]에 따라 결정된다. 다음은 몇몇 경우에 대한 에피사이클로이드를 나타낸 것이다.

파일:나무_에피사이클로이드_종류.png

[math(k=1)]일 때는 카디오이드(cardioid)라고 하는 아래와 같은 모양이 나오며, 심장형 곡선이라고도 한다.

파일:나무_심장형곡선_에피.png

4. 물리학적 문제

파일:상세 내용 아이콘.svg   자세한 내용은 사이클로이드/물리학적 문제 문서
번 문단을
부분을
참고하십시오.

5. 관련 문서



[1] 파선. 한자어식 표현으로, 擺는 여기서 진자를 뜻한다. [2] [math(k)]가 유리수라면, 닫힌 곡선이 되며, [math(k)]가 무리수라면 열린 곡선으로, 결국 [math(R-2r \leq \rho \leq R)]영역을 가득 메우게 된다. [math(\rho)]는 원점으로 부터 임의의 점까지의 거리이다. [3] 진나이 토모노리의 퀴즈쇼 타임쇼킹 2편 중 본 문제 제1번에서 [math(x)]축 방향으로 [math(a)]만큼, [math(y)]축 방향으로 [math(b)]만큼 늘린 아스트로이드의 곡선의 길이(단, [math(a \neq b)])를 구하라는 문제가 나왔다. 정답은 [math(\frac{a^2 + ab + b^2}{a + b})]. [4] [math(k)]가 유리수이면 닫힌 곡선, [math(k)]가 무리수라면 열린 곡선이 되어 결국 [math(R \leq \rho \leq R+2r)]인 영역을 가득 메우게 된다. [math(\rho)]는 원점으로부터 임의의 점까지의 거리이다.