주기율표 | |||||||||||||||||||
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -6px -1px -11px; font-size: .9em" |
<colbgcolor=#f5f5f5,#2d2f34> 족 주기
|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
1 | H | He | |||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |
6 | Cs | Ba | (란) | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | (악) | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
(란) | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||||
(악) | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | ||||
{{{#!wiki style="margin:-15px -10px; font-size:calc(10em/9); word-break: keep-all" | 범례 | ||||||||||||||||||
{{{#!wiki style="margin:-15px -10px" | }}} | ||||||||||||||||||
• 배경색: 위와 같은 원소 종류 분류 | |||||||||||||||||||
• 글자색: 표준 상태(298 K(25 °C), 1기압)에서의 원소 상태, ◆ 고체 · ◆ 액체 · ◆ 기체 | |||||||||||||||||||
• 밑줄: 자연계에 없는 인공 원소 혹은 극미량으로만 존재하는 원소로, 정확한 원자량을 측정하기 어려움 | |||||||||||||||||||
관련 문서: 틀:확장 주기율표 | }}} | }}}}}}}}} |
4Be 베릴륨 Beryllium |
|||
분류 | 알칼리 토금속 | 상태 | 고체 |
원자량 | 9.0121831 | 밀도 | 1.85 g/cm3 |
녹는점 | 1282 °C | 끓는점 | 2970 °C |
용융열 | 12.2 kJ/mol | 증발열 | 292 kJ/mol |
원자가 | 2 | 이온화에너지 | 899.5, 1757.1, 14848.7 kJ/mol |
전기음성도 | 1.57 | 전자친화도 | -50 kJ/mol |
발견 | L. N. Vauquelin (1797) | ||
CAS 등록번호 | 7440-41-7 | ||
이전 원소 | 리튬(Li) | 다음 원소 | 붕소(B) |
|
|
|
[clearfix]
1. 개요
주기율표 제2족에 속하는 알칼리 토금속의 원소.결정구조는 밀집육각결정, 공간군은 P63/mmc. 금속치고는 이온화 에너지가 높아 공유 결합을 하기도 한다. 가볍고 단단하나 부스러지기 쉽고 독성이 있다.
2. 발견과 명명
1797년 프랑스의 화학자 보클랭은 녹주석(Beryl)에서 미지의 금속산화물을 발견했다. 그는 이 산화물을 맛보고 단맛이 났기 때문에 그리스어로 '달다'를 의미하는 '글루시늄'이라는 이름을 붙였다. 하지만 원소를 분리하지는 못하고, 1828년 독일의 화학자 뷔시와 뵐러가 각각 독자적으로 원소의 분리에 성공해, 그 해에 베릴륨이라는 이름을 붙였다.3. 물리적 특징
보통 원자 번호가 짝수인 원소는 둘 이상의 안정 동위원소를 가지는 경우가 흔하지만, 베릴륨의 안정한 동위원소는 베릴륨-9 뿐이다. 베릴륨-8은 알파 붕괴를 하는 가장 가벼운 동위원소이다. 수명도 매우 짧기 때문에 항성이 헬륨을 탄소로 융합하는 삼중알파과정에서 병목현상을 유발한다. 그러나 만일 우주 초기의 물리 상수가 미세하게 달랐다면 베릴륨-8 또한 안정적일 수 있었을 것인데, 베릴륨-8이 만일 안정적이었다면 항성들은 베릴륨 연소 과정(8Be + 4He = 12C, 8Be + 8Be = 16O)을 통해 탄소와 산소를 더 수월하게 만들 수 있게 되며, 우주에서 베릴륨의 존재비도 훨씬 높았을 것이다. 또한 항성의 진화 과정에도 영향을 끼쳐 태양과 비슷하거나 무거운 별들은 적색거성 단계에서 헬륨/베릴륨 연소 단계를 나누어 가지게 되며, 무거운 적색왜성들은 헬륨 백색왜성 대신 베릴륨 백색왜성이 될 수 있게 된다.금속 원소 중에선 두 번째로 가벼우며, 주기율표상 4번에 위치하고 있는 매우 가벼운 원소이다. 같은 부피일 때 알루미늄의 70%, 티타늄의 40%, 철의 23% 정도의 무게에 불과할 정도. 그러나 가벼운 무게와 어울리지 않는 탁월한 강성(영률 287GPa[1])으로 인하여 어마어마한 비강도(무게 대비 강도)를 지닌다. 그 가볍다는 티타늄보다도 훨씬 가볍고 훨씬 튼튼하며, 강철을 비강도가 아니라 순수 강도로 이겨먹는 것이다. 다만 탄성에 해당하는 영률만 압도적일뿐 인장강도는 370MPa에 항복강도는 240MPa로[2] A36강의 인장강도 400~550MPa와 항복강도 250Mpa에 비해 약하다. 또한 샤르피 충격[3] 값은 1.50 ~ 5.50J로 4.33 ~ 5.66J의 유리섬유와 비슷하며[4] A36강의 약 5.83[5] ~ 271.16J[6][7]에 비해 압도적으로 낮다. 심지어 탄소섬유의 7.5J[8]보다도 낮다. 즉 강도가 좋은 것은 맞지만 충격에 매우 쉽게 부서지는 딱딱한 금속이다.
더불어 알루미늄이나 티타늄처럼 표면에 1~10nm 두께의 매우 얇고 단단한 산화막을 형성하기 때문에 공기/담수/해수에 부식되지 않으며, 높은 비열(1925 J·kg-1·K-1)과 열전도율(216 W·m-1·K-1) 덕분에 단위 중량 당 방열 성능으로는 금속 중 최고다. 이 방열 성능과 상대적으로 낮은 열팽창계수(11.4×10-6 K-1)로 인해 열 부하가 가해지는 조건에서 대단히 뛰어난 안정성을 보이며, 더불어 극저온 환경에서도 사용할 수 있어 우주 망원경에서도 쓴다.
조금 독특한 특성으로, 낮은 밀도와 높은 탄성계수로 인해 베릴륨 내부의 음속은 12.7km/s로 비상식적으로 높은 수치를 나타낸다. 수중에서의 음속이 약 1,400m/s, 강철 내부의 음속이 약 5000m/s인 것을 생각하면 대단한 수치다.
4. 용도
- 녹주석(Be3Al2(Si6O18): 베릴륨과 알루미늄이 농집된 지역에서 형성되는 광물. 아무 불순물이 없다면 투명하지만 결정 구조에 다양한 불순물이 함유되면 색을 띄게 된다. 일반적으로는 베릴륨의 정제용 원광으로 쓰이며, 크고 투명하며 색이 잘 나온 것은 보석으로 대접받는다. 녹주석에 크로뮴이나 바나듐 이온이 함유되어 녹색이 된 것이 바로 에메랄드이며, 2가 철이나 스칸듐이 함유되어 물색이 된 것이 아쿠아마린이다.
- 원자력 분야: 원자력 발전에는 핵분열 후에 방출되는 중성자의 속도를 낮춰, 다음의 핵분열을 일으키기 위한 감속재가 필요하다. 베릴륨은 주로 중성자의 감속재나 반사재로서 이용된다. 아주 작고 산란단면적이 큰 베릴륨은 경수, 중수, 흑연과 함께 중성자의 감속재 및 반사재로 이용된다. 예를 들어 우라늄 원자탄의 경우 무기급 우라늄 코어를 10cm 두께의 베릴륨 반사재로 감싸면 52kg 정도인 임계질량을 1/3 로 감소시켜 18kg 정도로 줄일 수 있다. 이는 천연 우라늄을 반사재로 쓰는 것보다 효율이 좋다. 또 용융염 원자로 등에서 용융염의 주성분은 리튬염이지만 용융온도가 높기 때문에 비슷한 원자적 성질을 가진 리튬염과 베릴륨염을 혼합해서 녹는 온도를 낮춘다.
- 합금: 구리에 1~2%의 베릴륨을 섞은 합금은 '베릴륨 청동'이라 불리며, 순 구리에 비해 6배 이상 강인하고 탄력성이 있으며, 전기전도성도 높아서 많은 응용 분야에 쓰인다.
- 방사선 분야: 대부분의 X선과 감마선 파장에 대해 거의 완전히 투명하다. 때문에 대부분의 X선 연구용 샘플 홀더나 방사창문은 베릴륨으로 만들어진다. 베릴륨 방사창을 사용하면 약 100eV 가량의 저에너지 X선을 얻을 수 있다는 장점이 있다.[9]
- 거울: 얇게 펴면 가시광선이나 적외선 대역을 반사하는 거울로도 쓸 수 있는데, 열적 안정성이 뛰어나서 극저온 환경에서도 쓸 수 있으며 매우 가볍기 때문에 기상위성과 우주 망원경의 광학계통에 절찬리에 쓰이고 있다. 제임스 웹 우주 망원경의 거대한 반사경은 18개의 육각형 금도금 베릴륨 패널을 합쳐 만들어졌으며[10], 스피처 우주 망원경은 아예 광학계 전체가 다 베릴륨이다. 또한 매우 빠른 움직임을 위해 저질량과 고강성이 요구되는 주력 전차 사통장치의 거울로도 쓰인다.[11]
- 세라믹: 베릴륨과 산소의 화합물인 산화베릴륨은 열전도율이 높은 절연체이다. 때문에 소결하여 세라믹으로 만들어 반도체에 많이 쓰이는데, 비슷한 용도의 산화알루미늄보다 열전도율이 높기 때문에 반도체 내부의 절연체로 사용할 경우 반도체의 방열성능 향상 효과를 볼 수 있다. 진공관이나 마그네트론 등에는 구조용 세라믹으로도 사용된다.
- 음향기기: 매우 가볍고 튼튼하다는 점과 특유의 12.7km/s의 내부음속특징을 이용해 고성능 스피커의 진동판 소재로도 쓰다. 음향기기의 진동판, 특히 트위터는 가볍고 견고할수록 유리하고 내부 음속 특징 덕에 파손이 더 높은 주파수에서 일어나기 때문이다. 베릴륨 트위터를 사용하는 대표적인 브랜드가 포칼이며, 여타 회사들도 이어폰, 헤드폰의 다이나믹 드라이버 진동판 소재나 코팅재로 쓰고 있다. 코팅재는 극미량을 사용하므로 진동판을 가루를 내지 않는 이상 비교적 안전하다는 장점이 있다. 다만 포칼의 베릴륨 트위터는 코팅재가 아니라서 취급 주의 설명서와 파손시 조각을 모으기 위한 접착 테이프가 있을 정도다.
5. 독성
{{{#!wiki style="margin:0 -10px -5px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px; word-break:keep-all" |
1군: 확실한 발암 물질 120개 | |
X선 · 감마선 · 가공육 · 가죽 먼지 · 간흡충 · 설퍼 머스터드 · 고엽제 · 광둥성식 염장 생선 · 그을음 · 니켈 화합물 · 흡연 및 간접흡연 · 비소 및 유기 비소 화합물 · 디젤 엔진의 배기 가스 · 라듐 · 톱밥(목재 먼지) · 미세먼지 및 기타 대기오염 · B형 간염 · C형 간염 · 방사성 핵종 · 베릴륨 · 벤젠 · 벤조피렌 · 빈랑 · 사염화탄소 · 산화에틸렌( 에틸렌 옥사이드) · 석면 · 석탄 · 셰일 오일 · 스모그(화학성 안개) · 방사성 스트론튬 · 방사성 요오드 · 아르신 · 아플라톡신 · 알루미늄 공정 · 엡스타인-바 바이러스 · 에탄올( 술) · 역청 · 위나선균 · 규소 먼지 · 인 · 인유두종 바이러스[1] · 자외선과 자외선 태닝 기계 · 제철 공정 · 카드뮴 · 크로뮴 · 토륨 · 포름알데하이드 · 염화비닐, 염화 폐비닐 · 플루토늄 · 에스트로겐 프로게스토젠 경구 피임약 · 에이즈 등 | ||
2A군: 발암 가능성 있는 물질 75개 | ||
DDT · 교대근무 · 야간 근로 · 납 화합물 · 뜨거운 음료(65°C 이상) · 말라리아 · 미용 업무 · 바이오매스 연료 · 적색육[2] · 튀김 및 튀김 조리 업무 · 아나볼릭 스테로이드 · 우레탄 · 인유두종 바이러스 · 질산염 및 아질산염 · 아크릴아마이드 · 스티렌 등 | ||
2B군: 발암 가능성이 잠재적으로 의심되는 물질 313개 | ||
4-메틸이미다졸 · 가솔린 엔진의 배기 가스 · 경유 · 고사리[3] · 나프탈렌 · 도로 포장 중의 역청 노출 · 드라이클리닝 · 목공 업무 · 소방 업무 · 아세트알데하이드 · 아스파탐 · 알로에 베라 잎 추출물 · 이산화 타이타늄 · 인쇄 업무 · 자기장 · 초저주파 자기장 · 코발트 화합물 · 클로로포름 · 페놀프탈레인 · 피클 및 아시아의 절임 채소류 · 휘발유 등 | ||
3군: 발암여부가 정해지지 않은 물질 499개 | ||
4군: 암과 무관한 것으로 추정되는 물질 1개[4] | ||
[1] 암의 종류에 따라 1군/2A군으로 나뉜다. [2] GMO, 항생제 등 고기 잔류 물질이 문제가 아니다. IARC에서는 확실히 밝히지는 않았지만 고기의 성분 자체가 조리되면서 발암 물질을 필연적으로 함유하기 때문이라고 논평하였다. 청정우 같은 프리미엄육을 사 먹어도 발암성이 있다는 뜻이다. 이에 전세계의 육류업자들이 고기를 발암물질로 만들 셈이냐며 정식으로 항의하기도 하는 등 논란이 있었다. [3] 단, 올바른 조리 과정을 거치면 먹어도 문제는 없다. 문서 참조. [4] 카프로락탐. 2019년 1월 18일 IARC 서문 개정에 따라 불필요하다고 판단되어 삭제되었다. # |
}}}}}}}}} |
여기까지 읽었으면 이렇게 장점이 많으면서도 지구상에 풍부하기까지 한 베릴륨이 왜 우리 주변에 잘 보이지 않는지 의아할 수도 있을 것이다. 취성이 너무 강한 점이나 비용 등의 이유도 있겠지만 가장 큰 이유는 베릴륨이 인체에 극도로 해롭기 때문이다.[12]
베릴륨은 인체에 해롭기로는 비소나 수은, 석면에 버금가는 수준이다. 우선 확실하게 암을 일으키는 것으로 판명된 1급 발암물질로 분류되고 있으며, 베릴륨으로 인해 발생되는 만성 질환은 특별히 '베릴리아증(Berylliosis)' 또는 '만성 베릴륨증(Chronic Beryllium Disease, CBD)'이라고 불린다. 고농도 베릴륨에 단시간 노출되어 발생하는 질환은 '급성 베릴륨 중독(Acute beryllium poisoning)'[13] 이라고 하는데, 베릴륨 관련 산업안전 절차가 확립된 1950년대 이후론 급성 중독 사례는 극히 드물어졌다고 한다.
체내 유입된 베릴륨 입자는 T세포를 자극하여 해당 위치로 림프구와 대식세포가 끝없이 모이게 하여 육아종을 형성하며, 결국 폐섬유증이나 암을 초래한다. 이는 석면 노출과 동일한 증상이다. 이 때문에 급성 베릴륨 중독 시에는 급성 화학성 폐렴 증상이 발생하며, 긴 시간 동안 낮은 농도에 노출되면 폐, 간, 피부, 피하조직, 림프절 등 다양한 부위에 염증성 종양이 생성된다.
그런데 물리적으로만 문제를 일으키는 석면과는 다르게 베릴륨은 화학적 특성으로도 암을 유발한다. 베릴륨 이온(Be2+)은 화학적으로 마그네슘 이온(Mg2+)과 유사한데, 문제는 마그네슘이 각종 효소들이 절찬리에 사용하는 원소라서 그와 비슷한 성질의 베릴륨도 조직과 세포에 굉장히 쉽게 흡수된다. 그리고 일단 흡수되고 나면 수많은 효소들에 마그네슘 대신 결합하여 고장을 내는데, DNA 합성에 쓰이는 효소 또한 이렇게 고장나는 효소 중 하나이기 때문에 당장 증상이 생기지 않더라도 장기적인 암 발병률을 증가시키게 된다.
만성 베릴륨증(CBD)은 많은 양에 짧게 노출되거나, 적은 양에 오래 노출되는 두 경우 모두에서 발생할 수 있는데, 발병해도 별다른 치료법이 없고 증상 완화와 병증의 진행 억제 정도만이 가능하다고 한다. CBD 발병 시 사망률은 최소 5%, 최대 38%로 상당하며 #, 상술한 특성 탓에 완치된 뒤에도 암 발병률 증가 등의 후유증이 남는다. 잠복기도 사람마다 수 주에서 수십 년까지 들쭉날쭉하고, 드물게는 베릴륨 분진에 단 한 번 소량 노출되었음에도 CBD가 발병한 사례도 있다. 충격강도가 낮아 깨져 분진이 비산하기도 쉬운 점과 매우 긴 잠복기를 가지는 것까지 정말 석면을 빼다박은 듯한 독성이다.
베릴륨 자체는 일정 형태로 가공된 후에는 별 문제가 없기는 하지만, 필연적으로 분진이 발생할 수밖에 없는 제조/가공 과정에서 분진과 흄 방호를 위해 매우 신경 써야 하기에 제조단가 상승에도 톡톡히 한몫을 한다. 당연하지만 도검류, 절삭공구류, 차량 등 사용하면서 손상/마모될 수밖에 없는 물건에는 절대 사용할 수가 없다.[14]물론 금속 분진치고 사람 몸에 좋은 게 하나도 없긴 하지만, 베릴륨 분진은 개중에서도 인체독성이 석면, 비소, 수은 등과 맞먹는 수준이라는게 특이한 점이다.
포칼의 제품 중 베릴륨 소재의 부품이 들어간 제품엔, 하나같이 특히나 위험하다고 주의사항 설명란을 길고 빽빽히 적어놓은 것을 볼 수 있다. 스피커 사용 설명서에 장장 한 페이지에 걸쳐 베릴륨 관련 주의사항이 빼곡히 나열되어 있다. 보호그릴 벗기지 마라, 피부나 호흡기에 절대 닿게 하지 마라, 혹시 체내에 흡수되면 즉시 의사한테 달려가라, 버리려면 반드시 재활용 센터에 맡겨라 등등.... 심지어 파손 시 베릴륨 처리 용으로 쓰는 테이프와 봉투까지 동봉해준다. 베릴륨 관련 문의만을 처리하는 전용 이메일 주소까지 있을 정도.
6. 비용
2020년 기준으로 베릴륨의 가격은 kg당 약 850달러로, 같은 무게의 은(520달러)보다 훨씬 비싸다. 텅스텐은 kg당 33달러, 티타늄도 kg당 11달러 정도고 순철은 kg당 0.4달러 수준으로 가격이 형성되어 있다. 이는 베릴륨 자체가 지각에서 그렇게 희귀하지는 않지만,[15] 베릴륨의 원료인 녹주석이 채산성이 있을 만큼 모여있는 곳이 미국 유타 주 중부지역밖에 없는 데다가, '머티리언'[16]이라는 한 회사에서 독점 공급하고 있어서 가격 하락은 꿈도 꿀 수 없을 정도다.녹는점이 1287도로 높은 편인데[17], 반응성 때문에 용접하기 어려울 뿐더러 상술한 독성까지 신경써야 하니 가공비마저도 비싸다.
이러한 이유들 때문에 공업에서는 위에서 언급한 베릴륨청동 이외에는 실용화가 어렵다. '내구성과 강도가 요구되면서 가벼울수록 좋은 소재'가 필요한 곳은 산업계에서 이루 헤아릴 수 없을 정도로 많지만, 구조용으로 쓰기엔 원재료 단가부터 무지막지 한데다 상대적으로 깨지기도 쉽고 손상·파괴되었을 때 뒤처리가 매우 곤란해지므로 제대로 쓸 수가 없다. 거기다가 물성 면에서는 좀 떨어지지만 독성도 없고 단가도 베릴륨에 비해 훨씬 저렴하고 역으로 몇몇 물성은 더 좋은 티타늄, 알루미늄, 마그네슘이라는 대체재들이 존재하기 때문에 주력전차 사통장치의 거울이나 고급 스피커의 진동판같이 외부의 충격을 받기 힘든 물건이나 제임스 웹 우주 망원경같은 우주의 극한 조건이 아니고선 이 모든 어려움을 감당하고 사용하려는 시도조차 없는 것이 현실이다.
7. 동위원소 구성
동위원소 구성이다. AME2020,Nubase2020핵종 | 스핀패리티 | 반감기 | 붕괴 형태,존재비 | 핵자 당 결합에너지(keV) | 질량(u) |
5Be[18] | 1/2+ | 불안정 | p ? | 20(400) | 5.03987(215) |
6Be | 0+ | 5.0(3) 10-21s | 2p | 4487.2(9) | 6.019726 (6) |
7Be | 3/2- | 53.22(6) d | 전자 포획 | 5371.549(10) | 7.01692871(8) |
8Be | 0+ | 8.19(37) 10-17s | α | 7062.436(4) | 8.00530510(4) |
9Be | 3/2- | 안정 | 존재비 100% | 6462.669(9) | 9.012183.06(8) |
9mBe | 3/2- | 1.25(10) 10-18s | 들뜸 에너지 14390.3(1.7) keV | ||
10Be | 0+ | 1.387(12) 106y | β- | 6497.631(8) | 10.01353469(9) |
11Be | 1/2+ | 13.76(7) s | β- 96.7% | 5952.540(22) | 11.02166108(26) |
β- α 3.3% | |||||
β- p 0.0013% | |||||
β- n ? | |||||
11mBe | 3/2- | 9.3(1.3) 10-22s | 이성질핵 전이 ? | 들뜸 에너지 21158(20) keV | |
12Be | 0+ | 2.146(5) 10-2s | β- 99.5% | 5720.72(16) | 12.0269221(20) |
β- n 0.5% | |||||
12mBe | 0+ | 2.33(7) 10-7s | 이성질핵 전이 | 들뜸 에너지 2251(1) keV | |
13Be | (1/2-) | 1.0(7) 10-21s | n ? | 5241.4(8) | 13.036135(11) |
14Be | 0+ | 4.53(27) 10-3s | β- n 86% | 4994(9) | 14.04289(14) |
β- 9% | |||||
β- 2n 5% | |||||
β- t 0.02% | |||||
β- α <0.004% | |||||
15Be | (5/2+) | 7.9(2.7) 10-22s | n | 4541(11) | 15.05349(18) |
16Be | 0+ | 6.5(1.3) 10-22s | 2n | 4285(10) | 16.06167(18) |
8. 기타
- Bigpicture 원소 기호 '빅데이터' 자료에 의하면 서적에서의 언급 빈도 순위는 55위로, 기본 원소 20개 중에 꼴찌라는 굴욕을 맞이했다. 바로 윗순위가 38위인 아르곤이라는 점에서 상당히 낮은 빈도다. 원자번호 20 이하의 원소 중에서는 붕소와 같이 일반인들에게는 그리 친숙한 원소가 아니다.
- 국내 베릴륨은 경기도-강원도 북부 화강암지대, 충청도 텅스텐-몰리브덴 광산지대에 밀집되어 있다. 예시로 중천 광업주식회사는 1939년부터 텅스텐 광상에서 베릴륨 채굴도 함께 진행하였다. #
[1]
수직 방향에서 가해지는 힘에 대한 인장/압축 강성. 다른 소재들과 비교하면 인간 뼈 14GPa, 고강도
콘크리트 30GPa,
알루미늄 68GPa,
Grade 5 티타늄 114GPa,
단방향 CFRP 181GPa,
강철(A36) 200GPa,
다이아몬드가 1200GPa 정도이다.
#
[2]
출처
[3]
홈을 파놓은 시편을 해머로 치는 시험이다.
[4]
출처
[5]
영하20도 기준
[6]
영상60도 기준
[7]
출처
[8]
출처
[9]
방사선에 대해 '투명'한 소재를 사용할수록 더 낮은 에너지의 X선을 얻을 수 있다. 만일 다른 소재로 방사창을 만들면 저에너지 방사선은 방사창에 막혀버리고 고에너지 방사선만 뚫고 나오게 되니 저에너지 X선을 이용한 실험/연구가 불가능해진다.
[10]
덕분에 집광면적은
허블 우주 망원경의 7.3배에 달하지만 망원경 전체의 무게는 6.5톤으로 허블의 절반 수준이다.
[11]
레오파르트 1,
레오파르트 2의 사통에 베릴륨 거울이 들어간다.
[12]
후술되어 있지만, 이 위험성이 비용을 높이는 요인 중 하나이기도 하다.
[13]
급성 중독 시에는 몇 주에서 몇 달 정도 증상이 지속된다고 하며, 치사율은 약 10%이다. 더불어 15~20%의 경우에는 만성 베릴륨증으로 발전할 수도 있으며, 완치되었다 해도 폐암 발병률이 두 배 가량 증가하는 등의 후유증까지 남는다.
#
[14]
탄소섬유도 비슷한 논란이 있지만 베릴륨은 탄소섬유보다 충격에 약하다.
[15]
2.8mg/kg 정도로,
주석보다도 조금 많고 텅스텐과 비교하면 두 배나 많다. 56,300mg/kg인 철이나 5,650mg/kg인 티타늄보다는 당연히 아주 적지만 은, 이리듐, 팔라듐 등의 희귀 금속보다는 훨씬 많다.
[16]
Materion. 1940년대부터 브러시 웰맨이라는 이름으로 베릴륨 재료를 생산해 온 미국의 기업. 2011년 현재의 사명으로 변경하였다.
[17]
철보단 낮다.
[18]
미발견