1. 개요
Probability current양자역학에서는 불확정성 원리에 의해 입자의 위치나 운동량을 확정적으로 나타낼 수 없는 대신, 위치의 확률 밀도 함수로 나타낼 수 있다. 이때 입자의 시간과 위치에 따른 확률 밀도 함수를 [math( P(x,\,t) )]라 하면, 확률 흐름 밀도 [math( J(x,\,t) )]는 다음과 같은 식을 만족한다.
[math( \displaystyle {\partial P \over \partial t} = - {\partial J \over \partial x} )] |
[math( \displaystyle P_{ab} = \int_a^b P(x) \, dx )] |
[math( \displaystyle {dP_{ab} \over dt} = J(a,\,t) - J(b,\,t) )] |
2. 공식
입자의 파동함수를 [math( \Psi (x,\,t) )]라고 하면, 확률 밀도 함수는 [math( P(x,\,t) = {| \Psi |}^2 )]이다. 이때 1차원의 경우 확률 흐름 밀도 [math( J )]는 다음과 같이 [math( \Psi )]에 대한 식으로 나타낼 수 있다.[math( \displaystyle J(x,\,t) = - {{i \hbar} \over {2m}} \left( \Psi^\ast {{\partial \Psi} \over {\partial x}} - {{\partial \Psi^\ast} \over {\partial x}} \Psi \right) )] |
[math( \displaystyle J(x,\,t) = - {{i \hbar} \over {2m}} \left( \Psi^\ast \boldsymbol{ \nabla} \Psi - \Psi \boldsymbol{ \nabla} \Psi^\ast \right) )] |
3. 연속 방정식과의 관련성
슈뢰딩거 방정식[math( \displaystyle i\hbar{{\partial \Psi}\over{\partial t}} = - {{\hbar^2} \over {2m}} \boldsymbol{\nabla}^2\Psi + V\Psi )] |
[math( \displaystyle -i\hbar{{\partial \Psi^\ast}\over{\partial t}} = - {{\hbar^2} \over {2m}} \boldsymbol{\nabla}^2\Psi^\ast + V\Psi^\ast )] |
[math( \displaystyle i\hbar{{\partial }\over{\partial t}}(\Psi^\ast \Psi ) = - {{\hbar^2} \over {2m}} (\Psi^\ast \boldsymbol{\nabla}^2 \Psi - \Psi\boldsymbol{\nabla}^2 \Psi^\ast ) )] |
이때 [math(\rho)]를 확률 [math(|\Psi|^2)]로 생각한다면
[math( \displaystyle {{\partial \rho }\over{\partial t}} = - {{\hbar} \over {2mi}}\boldsymbol{\nabla} \cdot \left(\Psi^\ast \boldsymbol{\nabla} \Psi - \Psi\boldsymbol{\nabla} \Psi^\ast \right) )] |
연속 방정식은 다음과 같다.
[math(\displaystyle \boldsymbol{\nabla}\cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0)] |
위에서 얻은 식과 연속방정식을 비교하면 확률 흐름 밀도는 [math(\mathbf{J})]가 된다. 따라서 확률 흐름 밀도는 마치 어떤 영역에서 확률이 (마치 전류 밀도처럼) 빠져나오는 것이라고 생각할 수 있다.