최근 수정 시각 : 2025-01-13 10:59:14

사건(확률론)

표본공간에서 넘어옴

통계학
Statistics
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px); word-break: keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
<colbgcolor=#4d4d4d><colcolor=#fff> 수리통계학 기반 실해석학 ( 측도론) · 선형대수학 · 이산수학
확률론 사건 · 가능성 · 확률 변수 · 확률 분포 ( 표본 분포 · 정규 분포 · 이항 분포 · 푸아송 분포 · 카이제곱분포 · t분포 · Z분포 · F-분포 · 결합확률분포) · 확률밀도함수 · 확률질량함수 · 조건부확률 · 조건부기댓값 · 조건부분산 · 전체 확률의 법칙 · 베이즈 정리 · 도박사의 오류 · 도박꾼의 파산 · 몬티 홀 문제 · 뷔퐁의 바늘 · 마르코프 부등식 · 체비쇼프 부등식 · 큰 수의 법칙 ( 무한 원숭이 정리) · 중심극한정리 · 벤포드의 법칙
통계량 평균 ( 제곱평균제곱근 · 산술 평균 · 기하 평균 · 조화 평균 · 멱평균 · 대수 평균) · 기댓값 · 편차 ( 절대 편차 · 표준 편차) · 분산 ( 공분산) · 결정계수 · 변동계수 · 상관계수 · 대푯값 · 자유도
추론통계학 가설 · 변인 · 추정량 · 점추정 · 신뢰 구간 · 상관관계와 인과관계 · 실험통계학 · p-해킹 · 통계의 함정 · 그레인저 인과관계 · 신뢰도와 타당도
통계적 방법 회귀 분석 · 최소제곱법 · 분산 분석 · 주성분 분석 ( 요인 분석) · 시계열 분석 · 패널 분석 · 2SLS · 생존 분석 · GARCH · 비모수통계학 · 준모수통계학 · 기계학습 ( 군집 분석 · 분류 분석) · 위상 데이터분석 · 외삽법 · 메타 분석 · 모델링 ( 구조방정식)
기술통계학 ·
자료 시각화
도표 ( 그림그래프 · 막대그래프 · 선 그래프 · 원 그래프 · 상자 수염 그림 · 줄기와 잎 그림 · 산포도 · 산점도 · 히스토그램 · 도수분포표) · 그래프 왜곡 · 이상점 }}}}}}}}}

1. 개요2. 표본공간3. 종류
3.1. 곱사건3.2. 공사건3.3. 독립사건3.4. 배반사건3.5. 여사건3.6. 영사건3.7. 전사건3.8. 합사건

1. 개요

/ event

간단히는, 실험이나 시행(試行)에서 일어날 수 있는 결과.

동일한 조건을 가지고서 실험을 반복했을 때, 일어날 수 있는 모든 결과들의 집합을 표본공간(sample space)이라 하고 이를 그리스 문자 [math(\Omega)]로 표기하는데, 그러면 사건(event)이란 '전체 표본공간 [math(\Omega)] 중에서 전체 또는 일부를 모은 집합'이라고 할 수 있다. 일반적으로 어떤 사건이 일어나지 않을 확률은 1에서 그 사건이 일어날 확률을 빼서 구한다.

2. 표본공간

/ sample space

어떤 시행(, experiment)에서 일어날 수 있는 모든 경우를 [math(e_1)], [math(e_2)], [math(…)]로 나타낼 때, 집합 {[math(e_1, e_2, …)]}를 그 시행의 표본공간이라 한다.

3. 종류

가나다순으로 정렬한다. 합사건과 곱사건처럼 함께 설명해야 좋은 개념들이 있지만, 목차나 Ctrl+F로 원하는 내용을 찾아 읽기 바란다.

3.1. 곱사건

/ product event

둘 이상의 사건이 동시에 일어나는 사건을 해당 사건들의 곱사건이라고 한다. 사건 [math(A)]와 사건 [math(B)]의 곱사건은 기호로 [math(A\cap{B})]로 나타내며, 기호로는 '캡(cap)'이라고 읽는다. 교집합에 해당한다.

3.2. 공사건

/ empty event

어떤 시행에서, 시행 결과로 나올 수 없는 사건. '정육면체 주사위를 던졌을 때 7의 눈이 나올 사건'은 공사건이다. 공사건은 공집합 기호 [math(\emptyset)]으로 나타낸다. 공사건이 일어날 확률은 0이지만, 확률이 0이라고 무조건 공사건은 아니다. 이에 대해서는 후술. 공사건의 여사건은 전사건이다. 공집합에 해당한다.

3.3. 독립사건

/ independent event

독립사건이란, 어떤 한 사건이 발생했을 때 이 사건이 이후의 다른 사건이 일어날 확률에 영향을 주지 않는 것을 말한다. 확률적으로 각각의 사건들이 서로 독립적으로 발생하는 것이다.

예시로 주사위 던지기가 있다. 주사위를 2번 던지는 게임을 가정할 때, 첫 번째 주사위에서 4가 나왔다고 해서 다음 번 주사위의 특정 눈이 나올 확률이 달라지지 않는다. 즉, 앞선 사건이 뒤의 사건에 아무런 영향을 주지 않는 독립사건이다.

3.4. 배반사건

/ exclusive event

두 개의 사건이 동시에 일어날 수 없으면 그 두 사건은 서로 배반사건이다. 곧, 배반사건들은 한쪽이 일어날 때 다른 쪽이 절대 일어나지 않는 관계에 있다. 이에 따라 두 사건 중 적어도 하나가 공사건이면 두 사건은 배반사건이다. 서로소이기에, 사건 A 또는 사건 B가 일어날 확률을 구한다면, 두 확률을 더하면 된다. 두 사건 중 하나가 일어나면 나머지 하나는 절대로 일어나지 않기 때문에, 모든 배반사건은 극단적으로 명백한 종속사건이다. 독립사건과는 전혀 다른 이야기이며, 배반사건과 독립사건은 절대로 양립할 수 없다. 즉 배반사건과 독립사건을 연관지은 내용은 깊게 따질 필요도 없는, 무조건 틀린 문장이다. 물론 두 사건이 모두 공사건이라면 얘기가 달라지겠지만, 일반적으로 사건의 독립, 종속 여부는 공사건에 대해서는 따지지 않는다.

'정육면체 주사위를 던졌을 때 1의 눈이 나올 사건'과 '정육면체 주사위를 던졌을 때 2의 눈이 나올 사건'은 배반사건이다. 배반사건인 두 사건이 동시에 일어날 사건은 공사건이고, 일어날 확률은 0이다.

'의리를 저버림'의 뜻인 '배반(背反/背叛)'과는 한자가 다르다. 그런데 서로 배반했기 때문에 같이 일어날 수 없는 사건이라고 생각하고 외우는 사람들이 많다

3.5. 여사건

/ complementary event

특정 사건이 발생하지 않을 사건. 곧, 사건 [math(A)]의 여사건이란 '사건 [math(A)]가 일어나지 않는 사건'이다. '[math(A)]의 여사건'은 기호 [math(\complement A)][1], [math(A^c)], [math(\bar{A})] 등으로 나타낸다. 여집합에 해당한다.

어떤 사건과 그 사건의 여사건은 동시에 일어날 수 없으므로 서로 배반사건이다. 곧, 여사건은 배반사건의 부분집합이며, 배반사건의 특수한 경우에 해당한다. 위에서 예를 든 '정육면체 주사위를 던졌을 때 1의 눈이 나올 사건'과 '정육면체 주사위를 던졌을 때 2의 눈이 나올 사건'과 같이, 서로 배반사건인 두 사건이 모두 일어나지 않을 확률이 0이라는 보장이 없으나[2] 서로 여사건인 두 사건 [math(A)]와 [math(\complement A)]가 모두 일어나지 않을 확률은 무조건 0이다. 즉, 어떤 사건과 그 여사건은 동시에 일어날 수도 없고, 동시에 일어나지 않을 수도 없다. 즉, 둘 중 반드시 하나만이 일어난다.

3.6. 영사건

/ null event

일어날 확률이 [math(0)]인 사건. 영사건의 예로는 무작위로 선택되는 '[math(0\leq{x}\leq{1})]인 임의의 실수 [math(x)]가 무엇인지 맞힐 사건', ' 0과 1 사이의 실수에서 유리수를 뽑는 사건' 등이 있다. 얼핏 공사건과 같아 보이지만 공사건은 영사건의 부분집합이다. 곧, 공사건은 영사건이지만 영사건이 꼭 공사건인 것은 아니다. 상술했던 두 사건이 반례.

3.7. 전사건

/ total event

실험이나 시행에서 일어날 수 있는 모든 사건. 이를테면, '자연수를 임의로 골랐을 때 홀수 또는 짝수가 나올 사건' 이렇게 6개의 사건은 전사건이다. 전사건이 일어날 확률은 1이며, 전사건의 여사건은 공사건이다. 전체집합에 해당한다.

확률이 1이지만 전사건이 아닌 사건을 뜻하는 별도의 용어는 없다. 굳이 쓰자면 영사건의 여사건이라고 할 수 있다. 혹은 일사건

3.8. 합사건

/ sum event

어떤 두 사건이 있을 때, 한 사건 또는 또 다른 사건이 일어나는 사건을 두 사건의 합사건이라고 한다. 사건 [math(A)]와 사건 [math(B)]의 합사건은 기호로 [math(A\cup B)]로 나타낸다. 기호로는 '컵(cup)'이라고 읽는다. 합집합에 해당한다.
[1] 전체집합이 표본공간임을 명시하는 [math(\complement_{\Omega} A)]로 표기하기도 한다. [2] 예시에서는 '정육면체를 주사위를 던졌을 때 3 또는 4 또는 5 또는 6의 눈이 나올 사건'이 되므로, 확률은 [math(\displaystyle\frac{4}{6}=\frac{2}{3})]가 된다.