유체역학 Fluid Mechanics |
||
{{{#!wiki style="margin:0 -10px -5px; min-height:2em; word-break:keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" |
<colbgcolor=#0D98BA><colcolor=#fff> 유체와 힘 | <colbgcolor=#fff,#1f2023> 유체 · 뉴턴 유체 · 비뉴턴 유체( 멱법칙 유체 · 오스트발트-드 웰 관계식 · 허쉘-버클리 유체 · 리-아이링 이론) · 압력 · 부력 ( 아르키메데스의 원리) · 항력 ( 수직항력 · 스토크스 법칙) · 응력 · 양력 · 표면장력 · 상 · 밀도 · 기체 법칙 ( 이상 기체 법칙) |
유체동역학 | 유동 ( 압축성 · 점성 · 탄성) · 난류 및 층류 · 레이놀즈 수송 정리 ( 체적 검사) | |
무차원수 | 마하 수 · 레이놀즈 수 · 프란틀 수 · 레일리 수 · 그라스호프 수 · 슈미트 수 · 네버러 수 · 프루드 수 | |
방정식 | 나비에-스토크스 방정식 · 연속 방정식 · 오일러 방정식 · 구성 방정식 · 베르누이 방정식 · 파스칼의 원리 · 브라운 운동 방정식 · 하겐-푸아죄유 법칙 | |
응용 및 현상 | 날씨 · 모세관 현상 · 마그누스 효과 · 케이 효과 · 카르만 효과 · 사이펀의 원리 · 대류 현상 · 슬립 스트림 · 최대동압점 · 스탈링 방정식 · 벤추리 효과 | |
해석 | 전산유체역학 · 풍동 실험 | }}}}}}}}} |
밀레니엄 문제 | |
미증명 이론 | 호지 추측 |
리만 가설 | |
양-밀스 가설의 존재와 질량 간극 | |
P-NP 문제 | |
버츠와 스위너톤-다이어 추측 | |
나비에-스토크스 방정식의 해의 존재와 매끄러움 | |
증명된 이론 | 푸앵카레 정리 |
1. 개요
Navier-Stokes equations / Navier-Stokes existence and smoothness[1]나비에-스토크스 방정식의 해의 존재와 매끄러움
나비에-스토크스 방정식의 해가 존재하는지, 존재한다면 그 해가 매끄러운지에 대한 증명
(또는, 유한시간 안에 폭발하는 해가 존재하는지에 대한 반증)
나비에-스토크스 방정식은 점탄성이 없는 유체(
뉴턴 유체, Newtonian fluid)[2]에 대한 운동량 수지식(balance)으로 비선형 편미분 방정식이다.[3]나비에-스토크스 방정식의 해가 존재하는지, 존재한다면 그 해가 매끄러운지에 대한 증명
(또는, 유한시간 안에 폭발하는 해가 존재하는지에 대한 반증)
프랑스 물리학자 클로드-루이 나비에와 영국 수학자 조지 스토크스가 뉴턴의 운동 제2법칙([math({\bf F}=m{\bf a})])를 유체역학에서 사용하기 쉽게 운동량을 기준으로 세운 수지식이다. 이 방정식은 물리학의 수많은 곳에서 널리 사용되고 있다.
수학적인 관점에서 보자면, 이 방정식이 3차원(또는 시간을 포함한 4차원 시공간) 상에 해가 항상 존재하는지, 존재한다면 해를 어떻게 구하는지, 특이점은 없는지, 매끄러운지 등이 증명되지 않았다. 이렇기 때문에 공학 최전선에서조차 전산유체역학에 의존한다. 이 문제를 수학적인 관점에서 해결하라는 것이 밀레니엄 문제이다. 현재까지 미해결 문제로서, 푼 사람에게 상금 100만 달러가 수여된다.
유체역학 1만 들었으면 볼 일이 없지만, 유체역학 2(응용유체역학)를 들으면 반드시 거쳐가는 관문이다. 그런데 유체역학 항목을 보면 알 수 있듯 유체역학을 안 하는 공학이 더 마이너하다. ABET을 실시하는 미국 공학 과정에서도 2학년 이전에 이수해야 하는 기본적이고 중요한 개념.
2. 공식
[math({\bf u})]는 유체의 속도, [math({\bf g})]는 중력가속도, [math(\rho)]는 밀도, [math(p)]는 압력, [math(\mu)]는 점성계수, [math(\nu)]는 점성계수를 밀도로 나눈 값[4][5], [math(w)]는 압력을 밀도로 나눈 값[6], [math(\tau)]는 전단응력계수, [math({\bf I})]는 단위행렬, [math(\otimes)]는 텐서곱을 나타낸다.2.1. 기본형
이 형태는 오귀스탱루이 코시의 코시 모멘텀 방정식(Cauchy momentum equation)이라고도 한다. 이 경우 나비에-스토크스 방정식(Navier-Stokes equation)이라는 이름은 뉴턴 유체(Newtonian fluid)의 응력-변형률 관계식(constitutive equation 또는 STRESS-STRAIN RELATIONS)에서 물질시간도함수를 대입하여 연속방정식으로 도입한후 정리해놓은 것으로 한정된다.[math(\dfrac{\partial}{\partial t}\left(\rho{\bf u}\right)+\boldsymbol{\nabla}\cdot\left(\rho{\bf u}\otimes{\bf u}+p{\bf I}\right)=\boldsymbol{\nabla}\cdot\tau+\rho{\bf g})]
가장 기본적인 형태. 응력과 변형률의 관계식에서 아직은 점성(μ)항을 나타내지 않은 상태이다.
2.2. 비압축성 (incompressible)
유체가 비압축성(대표적으로 액체)일 경우 식이 상당히 간단해진다. 속도장의 발산 [math(\dfrac{dP}{dt}=0)]이어서 최종 공식이 [math(\dfrac{d(-p{\bf u})}{dx}=\dfrac{dP}{dt}=0)]으로 아주 간단하게 나눠 떨어진다. 일반적으로 관련 학부 2~3학년 과정에서 다룬다.[math(\dfrac{\partial{\bf u}}{\partial t}+\left({\bf u}\cdot\boldsymbol{\nabla}\right){\bf u}-\nu\nabla^2{\bf u}=-\boldsymbol{\nabla}w+{\bf g})]}}}||
- [ 다른 표현 펼치기 · 접기 ]
- * 직교좌표에서
텐서를 사용해서 나타낸 식.
[math(\left(\dfrac{\partial}{\partial t}+u_j\dfrac{\partial}{\partial x_j}-\nu\dfrac{\partial^2}{{\partial x_j}^2}\right) u_i=-\dfrac{\partial w}{\partial x_i}+g_i)] -
위 Einstein notation을 풀어서 쓴 것
y&:\rho\left(\frac{\partial}{\partial t}+u_x\frac{\partial}{\partial x}+u_y\frac{\partial}{\partial y}+u_z\frac{\partial}{\partial z}\right)u_y=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^2}{{\partial x}^2}+\frac{\partial^2}{{\partial y}^2}+\frac{\partial^2}{{\partial z}^2}\right) u_y+\rho g_y\\
z&:\rho\left(\frac{\partial}{\partial t}+u_x\frac{\partial}{\partial x}+u_y\frac{\partial}{\partial y}+u_z\frac{\partial}{\partial z}\right)u_z=-\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^2}{{\partial x}^2}+\frac{\partial^2}{{\partial y}^2}+\frac{\partial^2}{{\partial z}^2}\right) u_z+\rho g_z
\end{aligned})]||
-
구면좌표계
\phi&:\rho\left(\frac{\partial u_{\phi}}{\partial t}+u_r\frac{\partial u_{\phi}}{\partial r}+\frac{u_{\phi}}{r\sin\theta}\frac{\partial u_{\phi}}{\partial\phi}+\frac{u_{\theta}}{r}\frac{\partial u_{\phi}}{\partial\theta}+\frac{u_ru_{\phi}+u_{\phi}u_{\theta}\cot\theta}{r}\right)=-\frac{1}{r\sin\theta}\frac{\partial p}{\partial\phi}+\rho g_{\phi}+\mu\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u_{\phi}}{\partial r}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2u_{\phi}}{\partial\phi^2}+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial u_{\phi}}{\partial\theta}\right)+\frac{2\sin\theta\frac{\partial u_r}{\partial\phi}+2\cos\theta\frac{\partial u_{\theta}}{\partial\phi}-u_{\phi}}{r^2\sin^2\theta}\right]\\
\theta&:\rho\left(\frac{\partial u_{\theta}}{\partial t}+u_r\frac{\partial u_{\theta}}{\partial r}+\frac{u_{\phi}}{r\sin\theta}\frac{\partial u_{\theta}}{\partial\phi}+\frac{u_{\theta}}{r}\frac{\partial u_{\theta}}{\partial\theta}+\frac{u_ru_{\theta}-u_{\phi}^2\cot\theta}{r}\right)=-\frac{1}{r}\frac{\partial p}{\partial\theta}+\rho g_{\theta}+\mu\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u_{\theta}}{\partial r}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2u_{\theta}}{\partial\phi^2}+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial u_{\theta}}{\partial\theta}\right)-\frac{2}{r^2}\frac{\partial u_r}{\partial\theta}-\frac{u_{\theta}+2\cos\theta\frac{\partial u_{\phi}}{\partial\phi}}{r^2\sin^2\theta}\right]
\end{aligned})]||
-
원통좌표계
\phi&:\rho\left(\frac{\partial u_{\phi}}{\partial t}+u_r\frac{\partial u_{\phi}}{\partial r}+\frac{u_{\phi}}{r}\frac{\partial u_{\phi}}{\partial\phi}+u_z\frac{\partial u_{\phi}}{\partial z}-\frac{u_ru_{\phi}}{r}\right)=-\frac{1}{r}\frac{\partial p}{\partial\phi}+\rho g_{\phi}+\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_{\phi}}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2u_{\phi}}{\partial\phi^2}+\frac{\partial^2u_{\phi}}{\partial z^2}-\frac{u_{\phi}}{r^2}+\frac{2}{r^2}\frac{\partial u_r}{\partial\phi}\right]\\
z&:\rho\left(\frac{\partial u_z}{\partial t}+u_r\frac{\partial u_z}{\partial r}+\frac{u_{\phi}}{r}\frac{\partial u_z}{\partial\phi}+u_z\frac{\partial u_z}{\partial z}\right)=-\frac{\partial p}{\partial z}+\rho g_{z}+\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_z}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2u_z}{\partial\phi^2}+\frac{\partial^2u_z}{\partial z^2}\right]
\end{aligned})]||
[8] -
위 Einstein notation을 풀어서 쓴 것
이렇게만 보자면 정말 어려워 보이지만, 물리학적 관점으로 이해를 시도하면 단순히 유체에 작용하는 모든 운동량 전달을 나열해놓은 것으로 그렇게 어렵지 않다. 유체에 전달되는 운동량은 유체의 흐름에 의한 대류 전달, 유체 또는 관 벽면의 입자 간 전달(전단 응력)(shear stress), 압력에 의한 전달, 중력에 의한 전달(유체의 무게)로 이루어져 있고, 각 항의 벡터식을 좌표계에 맞게 쪼갠 것뿐이다. 뉴턴의 법칙으로부터 이 비압축성 방정식의 유도를 보고 싶다면 오일러 방정식의 3.2항목으로.
2.2.1. 비점성 (inviscid)
이때는 식이 더 간단해진다.
[math(\dfrac{\partial{\bf u}}{\partial t}+\left({\bf u}\cdot\boldsymbol{\nabla}\right){\bf u}=-\boldsymbol{\nabla}w+{\bf g})]
|
이 식은 오일러 방정식이기도 하다. 교수, 조교의 재량에 따라 1학년 미적분학에서도 어려운 응용문제 수준으로 만나 볼 수 있는데, 공돌이 타입 교수나 조교들이 다변수 미적분 파트에서 연습 문제나 시험으로 종종 낼 때도 있다.(적당히 알고 있으면 맞힐 수 있다.)
일반적인 기계공학이나 화학공학 등에서는 잘 다루지 않는 영역이라, 항공역학이나 로켓공학을 공부하지 않는 이상 'Re가 매우 클 때는 이렇게 된다' 정도만 짚고 넘어가는 파트다.
2.3. 압축성
[math(\dfrac{\partial{\bf u}}{\partial t}+{\bf u}\cdot\boldsymbol{\nabla}{\bf u}=-\dfrac{1}{\rho}\boldsymbol{\nabla}\bar{p}+\nu\nabla^2{\bf u}+\dfrac{1}{3}\nu\boldsymbol{\nabla}(\boldsymbol{\nabla}\cdot{\bf u})+{\bf g})] |
이것까지 학부 과정에서 배우기엔 시간이 부족해서 기체의 유동도 비압축성이라 가정하며 실용적인 열 몇 가지 경우만 짚고 넘어간다.[9] 사실 일반적인 공학 입장에서는 저 열 몇 가지면 대체로 실용면에선 끝이라 봐도 무방하고,[10] 이거랑 일반항을 본격적으로 파는 건 대학원 가서 하게 된다.
3. 설명
유체역학의 가장 기본이 되는 지배방정식(governing equation). 물과 공기를 비롯해 점성을 가진 대부분의 기체와 액체의 운동을 나타내는 비선형 편미분 방정식이다.[11][12] 프랑스 물리학자 클로드 루이 나비에와 영국 수학자 조지 스토크스의 이름을 따왔다.나비에-스토크스 방정식은 뉴턴의 제2법칙인 F=ma를 유체역학에서 사용하기 편하게 그 형태를 바꾼 것이다. 유체는 고체와 달리 정해진 형태가 없기 때문에 우리가 흔히 역학 하면 생각하는 '고정된 좌표계'에서의 분석이 불가능하다. 따라서 유체에 뉴턴 역학을 적용하기 위해서는 다른 방식이 필요하고, 이 방식에 따라 운동량 보존 법칙을 재정리한 것이 이 방정식이다. 따라서 이 방정식은 운동량 보존 법칙이라고 불리기도 한다. 물리학에서 대표적으로 보존되는 물리량 중에서 유체역학에서 중요시하는 물리량은 질량, 운동량, 에너지로, 이 세 물리량의 보존 법칙[13]이 유체역학의 지배방정식이 되고, 그 중 가장 복잡하고 중요한 방정식이 이 나비에-스토크스 방정식이다. 때때로 질량 보존 법칙[14]까지 합쳐서 나비에-스토크스 방정식이라고 부를 때도 있다.
기계공학, 항공우주공학 전공 대학생이라면 2~3학년 때 처음 이 방정식을 접하게 된다. 물론 토목공학, 화학공학 등의 유체를 다루게 되는 학과에서도 배울 수 있다. 물리학에서는 주로 플라즈마 물리 전공자들이 다룬다.
비행기가 공중에 뜰 수 있는 것도, 기상청에서 아직 오지도 않은 며칠 후의 날씨를 예측할 수 있는 것도 이 방정식과 관련이 있다. 쉽게 압축하자면 만약 이 방정식의 일반해를 구하는 방법이 증명된다면 기상 예측 정확도가 엄청나게 높아진다는 이야기이다.
문제는 이 방정식이 지금까지 알려진 것 중에 (해석적인) 해를 구하기 가장 어려운 편미분방정식 중 하나라는 것이다. 이 방정식을 풀기 어렵게 만드는 범인은 위의 방정식의 좌변 두 번째 항([math(\boldsymbol{\nabla}\cdot\left(\rho{\bf u}\otimes{\bf u}+p{\bf I}\right))])으로, 이 항(advective term)[15]이 비선형[16]이기 때문에 해를 구하기가 어렵게 된다. 게다가 압축성의 경우에는 우변 맨 마지막의 점성항도 비선형([math(\mu\nabla^2{\bf u}\rightarrow\nu\nabla^2{\bf u}+{1\over 3}\nu\boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot{\bf u}\right))])으로 변한다. 몇몇 특수한 경우의 풀이법[17]은 알려져 있지만 일반적인 풀이법은 알려져 있지 않다. 심지어는 일반해가 있는지 없는지조차 아직 모른다... 이 방정식의 일반해(정확히는 전역적이고 매끄러운 일반해)의 존재성을 보이거나 반증하는 것은 'Navier–Stokes existence and smoothness'라는 이름으로 밀레니엄 문제로 선정되었으며, 현재 100만 달러의 상금이 걸려 있다. 이걸 푼다면 노벨물리학상부터 아벨상, 필즈상 등 온갖 상을 휩쓸고 밀레니엄 문제의 상금까지 받아갈 수 있다.
어쨌든 일반해의 존재성이 보장되느냐와 별개로 유체의 움직임을 예측하기 위해 컴퓨터를 동원해 수치적으로 구하는 것이 유일한 방법으로 해를 구해 쓰고 있다. 이를 전산유체역학(Computational Fluid Dynamics, 줄여서 CFD)이라고 부른다. 더 자세한 내용은 전산유체역학 참조.
2014년 1월 11일에 카자흐스탄 교수인 무흐타르바이 외텔바예프(Мұхтарбай Өтелбаев)가 이 방정식의 전역적(global)이고 연속적인 해가 존재함을 증명했다고 # 발표했으나, 결국 검증 끝에 해당 증명은 틀렸다고 판명되었다. #
4. 유도
4.1. 비압축성
나비에-스토크스 방정식은 오일러 방정식에다가 점성을 고려한 것이다. 해당 문서에도 점성에 대한 설명이 조금 나오지만, 이 항목에선 점성항을 조금 더 엄밀하게 다루고자 한다.일단 먼저 "변형률 속도(strain rate)"를 알아보자. 점성이 있는 유체라면 주위 유체에서부터 응력을 받으면, 이 응력(stress) 때문에 "변형률(strain)"이 생긴다. 이 변형률이 시간에 따라 변화하는 속도가 변형률 속도이며, [math(3\times 3)] 행렬 텐서인 [math(\nabla{\bf u})]로 정의된다. 대략 유체 "모양"이 변화하는 속도로 생각하면 된다.
이 텐서는 두 텐서로 분해가 가능한데, 하나는 유체가 얼마나 "회전"하는 정도를 나타내는 텐서이며, 다른 하나는 회전 없이 정말 모양이 변화하는 속도를 나타내는 텐서다. 후자를 [math(\underline{\underline\varepsilon})]라 칭하며,[18] [math(\underline{\underline\varepsilon}=\dfrac{1}{2}(\nabla{\bf u}+\nabla{\bf u}^{\rm T}))]로 정의된다.
뉴턴의 점성 법칙에 의하면 응력은 이 변형률 속도에 비례한다. 즉, [math(\underline{\underline\tau}\propto\underline{\underline\varepsilon})].[19] 이 법칙을 따르는 유체를 뉴턴 유체라고 한다. 아쉽게도 이 법칙은 우주의 기본적인 법칙은 아니고, 문제를 쉽게 만들기 위한 편의상의 법칙이다. 옴의 법칙이나 훅의 법칙 처럼.
이제 우린 나비에-스토크스를 유도할 준비가 되었다. 일단 오일러 방정식에서부터 시작하자.
[math(\rho\left(\dfrac{\partial{\bf u}}{\partial t}+({\bf u}\cdot\nabla){\bf u}\right)=-\nabla p+\rho{\bf g})]
좌변이 [math({\bf F}=m{\bf a})]의 [math(m{\bf a})]고, 우변이 [math({\bf F})]다. 단, 우변은 힘이 아니고 힘 밀도 (force density)라는 물리량이다. 좌변의 항도 질량 대신 (질량)밀도. 그렇다면 여태까지 이야기한 점성응력에 의한 힘 밀도는 무엇일까? 답은 [math(\nabla\cdot\underline{\underline\tau})]이다. 어째서일까?
먼저 코시 응력 텐서가 어떻게 생겼는지 한 번 보자.[20]
[math(\begin{bmatrix}\tau_{xx}\quad\tau_{xy}\quad\tau_{xz}\\\tau_{yx}\quad\tau_{yy}\quad\tau_{yz}\\\tau_{zx}\quad\tau_{zy}\quad\tau_{zz}\end{bmatrix})]
위의 그림을 참고해서 [math(F_x)]를 구해보자. [math(y)]와 [math(z)] 방향으로도 똑같은 방법으로 구할 수 있다.
[math({\rm d}F_x=\Delta\tau_{xx}\,{\rm d}y{\rm d}z+\Delta\tau_{yx}\,{\rm d}x{\rm d}z+\Delta\tau_{zx}\,{\rm d}x{\rm d}y=\left(\dfrac{\partial\tau_{xx}}{\partial x}+\dfrac{\partial\tau_{yx}}{\partial y}+\dfrac{\partial\tau_{zx}}{\partial z}\right)\,{\rm d}x{\rm d}y{\rm d}z)]
[math(\dfrac{{\rm d}F_x}{{\rm d}V}=\dfrac{\partial\tau_{xx}}{\partial x}+\dfrac{\partial\tau_{yx}}{\partial y}+\dfrac{\partial\tau_{zx}}{\partial z})]
[math(\dfrac{{\rm d}F_x}{{\rm d}V}=\dfrac{\partial\tau_{xx}}{\partial x}+\dfrac{\partial\tau_{yx}}{\partial y}+\dfrac{\partial\tau_{zx}}{\partial z})]
우변은 [math((\nabla\cdot\underline{\underline\tau})_x)]이므로, [math(y)]와 [math(z)] 방향으로도 똑같은 계산을 하면,
[math(\dfrac{{\rm d}{\bf F}}{{\rm d}V}=\nabla\cdot\underline{\underline\tau})]
인 걸 알 수 있다. 그렇다면 이제 이 항을 오일러 방정식의 우변에 더해주자.
[math(\rho\left(\dfrac{\partial{\bf u}}{\partial t}+({\bf u}\cdot\nabla){\bf u}\right)=-\nabla p+\nabla\cdot\underline{\underline\tau}+\rho{\bf g})]
이제 [math(\underline{\underline\tau})] 와 속도장인 [math({\bf u})]의 연관성을 찾아야 한다. 여기에 필요한 게 바로 [math(\underline{\underline\varepsilon})]다. 뉴턴의 점성 법칙을 적용하자.
[math(\underline{\underline\tau}=2\mu\underline{\underline\varepsilon})]
이렇게 비례상수를 [math(2\mu)]로 정한다. 그렇다면,
[math(\underline{\underline\tau}=\mu(\nabla{\bf u}+\nabla{\bf u}^{\rm T}))]
또한 성립한다. 또한, 조금만 계산을 해보면 [math(\nabla\cdot(\nabla{\bf u}+\nabla{\bf u}^{\rm T})=\nabla^2{\bf u})]인 걸 알 수 있다.(이유 비압축성 유체에서는 [math(\nabla\cdot{u}=0)] 이므로(연속방정식)) 따라서 [math(\nabla\cdot\underline{\underline\tau}=\mu\nabla^2{\bf u})]이며, 이걸 위의 식에 대입하면...
[math(\rho\left(\dfrac{\partial{\bf u}}{\partial t}+({\bf u}\cdot\nabla){\bf u}\right)-\mu\nabla^2{\bf u}=-\nabla p+\rho{\bf g})]
양변을 밀도로 나누고 [math(\nu=\dfrac{\mu}{\rho})]와 [math(\nabla w=\dfrac{\nabla p}{\rho})]를 적용하면 익숙한 비압축성 나비에-스토크스 방정식 완성.
[math(\dfrac{\partial{\bf u}}{\partial t}+({\bf u}\cdot\nabla{\bf u})-\nu\nabla^2{\bf u}=-\nabla w+{\bf g})]
4.2. 압축성
유체가 압축성이란 말은 [math(\nabla\cdot{\bf u}\neq 0)]와 동치다. 이 압축성 때문에, 방금 전에 구했던 응력 텐서를 조금 바꿔줘야 한다.[math(\underline{\underline\tau}=\lambda(\nabla\cdot{\bf u}){\bf I}+\mu(\nabla{\bf u}+\nabla{\bf u}^{\rm T}))]
여기서 [math(\lambda)]는 비례상수이며, [math({\bf I})]는 [math(3\times 3)] 단위행렬이다. 예상대로 다이버전스가 클수록(유체가 더 많이 팽창할 수록) 응력이 커진다. [math(\zeta=\lambda+\dfrac{2}{3}\mu)] 를 정의하고 이 텐서를 분해하면
[math(\underline{\underline\tau}=\zeta(\nabla\cdot{\bf u}){\bf I}+\mu\left(\nabla{\bf u}+\nabla{\bf u}^{\rm T}-\dfrac{2}{3}(\nabla\cdot{\bf u}){\bf I}\right))]
양쪽에 [math(\nabla\cdot)] 연산자를 취해주면 나오는 우변 결과를 오일러 방정식 우변에 대입하자. [math(\bar p=p-\zeta\nabla\cdot{\bf u})]도 대입하고 양변을 밀도로 나누면 위쪽 항목에 쓰여져 있는 압축성 나비에-스토크스 방정식이 나온다. 참고로 [math(\nabla\cdot\nabla{\bf u}=\nabla^2{\bf u})]이며, [math(\nabla\cdot\nabla{\bf u}^{\rm T}=\nabla(\nabla\cdot{\bf u}))]이다.
[math(\dfrac{\partial{\bf u}}{\partial t}+({\bf u}\cdot\nabla{\bf u})=-\dfrac{1}{\rho}\nabla\bar{p}+\nu\nabla^2{\bf u}+\dfrac{1}{3}\nu\nabla(\nabla\cdot{\bf u})+{\bf g})]
당연한 얘기지만, [math(\nabla\cdot{\bf u}=0)]를 가정하면 비압축성 형태로 단순화된다.
5. 부분적 해
- 2차원에서의 문제는 일찍이 1969년에 해결되었다. 러시아의 수학자 Olga Aleksandrovna Ladyzhenskaya가 전역적(global)이고 매끄러운 해가 있음을 증명하였다.[21]
- 초기 속도 [math({\bf v_0(x)})]가 충분히 작을 경우에 대해서도 해결되었다. 전역적(global)이고 매끄러운 해가 있다.[A]
- 유한 시간 [math({T})]에 대해 초기 속도 [math({\bf v_0(x)})]가 주어진다면 [math(\mathbb{R}^3 × [0,T])] 위에서 나비에-스토크스 방정식은 전역적이고 매끄러운 해 [math({\bf v}(x,t))]와 [math(p(x,t))]를 갖는다. 그러나, 유한 시간 내에 폭발하는 해(blow-up)가 존재할 경우 그 이후의 거동에 대해서는 알려지지 않았다.[A]
- 1934년에 장 르레(Jean Leray)가 약해(weak solution)의 존재성을 증명했다.[24]
- 1962년에 존 내시가 국소적(local) 시간 안에서 유일하고(unique) 정칙적인(regular) 해의 존재를 증명하였다.[25]
- 테렌스 타오는 2014년, 2016년에 평균화된(averaged) 3차원 나비에-스토크스 방정식이, 유한 시간 내에 폭발하는 해를 가짐을 보였다.[26][27]
전문가들 사이에서도 강해(strong solution)가 존재하는지, 유한시간 안에 폭발하는 해가 존재하는지 의견이 분분한 상태다.
6. 창작물에서의 등장
- 만화 바텐더에서 잠시 언급되는데, 사사쿠라 류의 단골 중 하나인 수학자가 이 나비에-스토크스 방정식의 증명에 상당히 도달했다는 식의 설정으로 등장하며 책까지 쓴 것으로 나온다. 다만 말 그대로 이름만 언급하고 넘어가는 것으로 보아 증명은 실패한 듯. 애초에 '수학자 = 괴짜'라는 이미지를 표현하기 위한 조연이다.
- 히가시노 게이고의 소설 라플라스의 마녀에서도 핵심 주제로 등장한다. 특정한 뇌 수술을 받은 사람이 무의식적으로 이 문제를 해결했다는 설정. 며칠 후의 날씨를 정확히 예측하고, 3층 높이에서 종이를 떨어트려서 정확한 곳에 안착시키는 기행을 보여준다. 이건 유체역학뿐만 아니라 제어공학을 신급으로 잘해야 할 텐데...
- 웹툰 수학 잘하는 법에서 두 주인공이 해결하고자 하는 문제로 나온다. 결말에서 증명된 것으로 나오며, 두 주인공이 이 문제를 해결하는 데 중요한 역할을 한 것으로 나온다.
- 웹툰 놓지마 정신줄에서는 853화에 정신이가 썬더피에게 나비에-스토크스 방정식을 풀어보라 시키고, 그 다음으로는 호지 추측까지 풀어보라 시킨다. 중간중간의 대사를 보면 정신이는 모든 밀레니엄 문제를 풀은 것으로 보인다...
- 우리는 공부를 못해에서 오가타 리즈가, 나리유키를 공항에 갈 수 있도록 선생님들의 주의를 끌기 위해 이 방정식에 대한 질문을 한다. 선생님은 물론 멘탈이 나가고...
7. 관련 문서
{{{#!wiki style="margin: -5px -10px; padding: 10px 0px; background-image: linear-gradient(to right, #9C1801, #FFBC0B)" |
Mechanical Engineering
{{{#!folding [ 펼치기 · 접기 ]}}} ||
[1]
줄여서 NS Equation이라고도 한다.
[2]
이는 다시 말하면 유체가 점탄성을 갖는 경우에는 어찌되었건 이 방정식이 성립하지 않는다는 것을 의미한다!
혈액이나
우유 같은 경우가 대표적.
[3]
Basics of Fluid Mechanics ,Genick Bar-Meir 2014 GFDL
https://open.umn.edu/opentextbooks/textbooks/85
[4]
[math(\nu)][math(=)][math(\dfrac \mu\rho)]
[5]
흔히 동점성(Kinematic Viscosity)이라고 부른다.
[6]
[math(w)][math(=)][math(\dfrac p\rho)]
[7]
가끔 [math(\nabla^2)] 대신 [math(\Delta)]로 표현하곤 하는데, 같은 뜻이다. 역삼각형은
델, 똑바로 된 삼각형은
라플라시안.
[8]
주어진 항은 대부분 필요에 따라 구속조건(유체 및 관 벽 간에 작용하는 전단력, 유체 간 점성 차이, 유체의 속도)을 통하여 소거할 수 있다.
[9]
예를 하나 들면 관속을 흐르는 유동체의 기체와 액체.
[10]
화공을 예를 들면 졸업 후 필드에 나가거나 대학원에서 플랜트에 가보면 알겠지만, 도면도 그렇고 정말 완벽하게 이걸 쓰기 편하게 맞춰서 설계가 기본적으로 되어 있다.
[11]
슬러리나 라텍스처럼 나비에-스토크스 방정식으로 설명할 수 없는 유체도 존재한다. 이는 방정식 자체가 Newtonian Fluid에만 적용이 가능하기 때문이며, 이런 Non-newtonian fluid들은 나비에-스토크스 방정식으로는 설명할 수 없는
점탄성(viscoelasticity) 등의 성질을 갖고 있다.
[12]
유체역학은
연속체역학의 부분집합인 만큼, 연속체로 가정할 수 없는 경우(희박기체, 아주 작은 스케일 등)에는 적용되지 않을 수 있다.
[13]
비압축성의 경우 에너지 보존 법칙은 제외하고 풀기도 한다.
[14]
연속방정식이라고 불리기도 한다.
[15]
유체 이동에 의한 속도장의 변화를 나타낸다.
[16]
1차
연립방정식으로 변형할 수 없는 꼴.
[17]
대표적인 것으로는 속도가 다른 두 평판 사이의 유동(Couette; 예를 들어 비 올 때 도로와 타이어 사이의 빗물의 유동)이나 가늘고 긴 관 속을 흐르는 유동(Poiseuille)이 있다. 이 이외에도 몇 가지의 해석해가 존재하지만, 대부분 매우 느린 유동에 해당한다. 이는 사실상 공돌이들이 배우는 유체역학이 복잡해지는 이유 중 하나로, 여러 경우에 대해 각각 다른 공식을 적용해야 하기 때문이다.
[18]
두 줄 그은 건 이게 스칼라나 벡터가 아닌 행렬 텐서라는 걸 강조하기 위한 것이다.
[19]
응력은 소문자 타우([math(\underline{\underline\tau})])로 나타낼 때도 있고, 소문자 시그마([math(\underline{\underline\sigma})])로 나타낼 때도 있다. 주로 전단 응력에는 타우를 쓰고 압축 응력에는 시그마를 쓰지만, 편의를 위해서 이 항목에서는 전부 타우로 통일했다.
[20]
이 텐서의 정확한 의미는
응력문서 참조.
[21]
Ladyzhenskaya, Olʹga Aleksandrovna (1969). The Mathematical Theory of Viscous Incompressible Flows.
[A]
"Official statement of the problem". Clay Mathematics Institute.
[A]
[24]
Leray, Jean (1934). "Sur le mouvement d'un liquide visqueux emplissant l'espace"
[25]
Nasar, Sylvia (2001). "Chapter 41: An Interlude of Enforced Rationality". A Beautiful Mind. Touchstone.
[26]
Tao, Terence (2014-02-04). "Finite time blowup for an averaged three-dimensional Navier-Stokes equation"
[27]
Tao, Terence (2016). "Finite time blowup for an averaged three-dimensional Navier–Stokes equation"
[28]
작중 시점 나이가 13세인데 거기서 중학교 월반까지 한 상태다.